AD-A130 126 AUTOMATIC FEATURE EXTRACTION SYSTEM NO 2(U) PAR Wy
TECHNOLOGY CORP NEW HARTFORD NY J C LEITZ ET AtL.
JAN 83 PAR-82-19 RADC TR-83-22 F30602-81-C-0034

UNCLASSIFIED F/G 20/6 NL

—

Lo
T

flis =

28 flis pre

Ll d]

rrr

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS.]963.A

PAR Technology Corporation

BTG EILE CORY

Finel Tochnical Report
Janvery 1963

h

AUTOMATIC FEATURE EXTRACTION
SYSTEM 42

John C. Leltz, James L. Cambier, Michael $. Crone, Robert Fries,
Michael A. Gennert, Gerald J. Kinn, John F. Lemmer and
Patricia M. Lontx

DTIC
\ELECTE
G JULS 1983

A

ROME AIR DEVELOPMENT CENTER
Alr Force Systems Command
Griffiss Alr Force Base, NY 13441

83 07 6 _ 185

. : '
‘This report hés beea raviewed by the RADC Public Affairs Office (PA) and
z is releassble to the National Techsical Information Servics (NTIS). At NTIS
it will be releasadble to the genaral pudblic, including foreign nations.

- RADC-TR-83-22 has been reviewed and is approved for publicationm.

L P

Z Ak O
ERICK W. RAHRIG
ect Engineer

s, O 5

JOHN N. ENTZMINGER, JR.
Technical Director
Intelligence & Reconnaissance Division

|

s il s it -

FOR THE COMMANDER: 9,4, /2 %‘

JOHN P, HUSS
Acting Chief, Plans Office

If your addxgss has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (IRRE), Griffiss AFB NY 13441. This will assist us in
maintaining a current mailing list.

Do not raturn copies of this report unlsss contractual obligations or notices (
on & specific document requires that it be returned.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE Bz,‘;ﬁ’;"c‘!.‘:;{gg};g",,’ou
NUM 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG numBER]
RADC~-TR-83-22
pr————— o $. TYPE OF REPORT & PERIOD COVERED
G TITLE g sebune Final Technical Report
AUTOMATIC FEATURE EXTRACTION SYSTEM #2 22 Dec 80 - 15 Dec 82 ;
6. PERFORMING OG. REPORT NUMBER il
82-19 :
- 5. CONTRACT OR GRANT NUMBER(S) |
X ﬂ ~e. Leitgi gichfglJA.ngnnert
Jam s L. Cambier era . nn
Micﬁael S. Crone John F. Lemmer F30602-81-C-0034
Robert Fries Patricia M. Lentz
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. -'OG-AH ELEMENT. PROJECT TASK
PAR Technology Corporation 6375;3 WORK UNIT nuMBER
Seneca Plaza Route 5 32050322
New Hartford NY 13413 ;
11. CONTROLLING OF FICE NAME AND ADDRESS 12. REPORT QATE
Rome Air Development Center (IRRE) ’fa:ngzsfaﬁzts
Griffiss AFB NY 13441 i64
T IONI'O'ING AGENCY NAME & ADORESS(!! ditferent {rom Controlling Office) 15. SECURITY CLASS. (of thie report)
Same UNCLASSIFIED
e, DECL ASSIFICATION/ DOWNGRADING
SCHEOULE
N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. CISTRIBUTION STATEMENT (of the sbairact entered in Block 20, il diiferent (rom Report)

Same

Iq

8. SUPPLEMENTARY NOTES
RADC Project Engineer: Frederick W. Rahrig (IRRE)

-

9. KEY WORDS (Continue on reverse side il neceseary and identity by block number)
Digital Image Processing
Feature Extraction :
Photogrammetry k
Artificial Intelligence]

20. ABSTRACT (Continue on reveras side if necessary and identily by block number)

This report documents the development of the Automatic Feature Extraction
System delivered to the Defense Mapping Agency. This effort has provided
an advanced development model of a semi-automatic interactive system
capable of generating data files to support mapping, charting and geodesy,
products from digital source inputs and a flexible test bed to permit ex-~
perimentation for addressing the long range image processing requirements
of the Defense Mapping Agency. (o

/"“\

/

0D , ' 53"%; 1473 €oimion oF 1 NOv 63 18 OBsOLETE UNCLASSIFIED
SECURITY CLASSIFICATION GF THIS RAGE (When Date Enterse)

SECTION

1.0

1.1

1.2

1-3

1.4

2.0

2,2

2.3

TABLE OF CONTENTS

INTRODUCTION.

BACKGROUND,

TEST RESULTS.

AFES OVERVIEW

INTRODUCTION.

AFES PURPOSE.

AFES GOALS. .

Scanner/Pletter

Subsystem . . .

Software Testing.

REPORT ORGANIZATION

Multi-user Facility

Easily Medifiable .

2-1

2-1

2-1

2.3.3 Medularity. . . . « . &«

2.3.4 Independence Frem Image

Seurce. . ¢« « ¢ o & . o

OVERALL AFES STRUCTURE,

2.4.1 AFES Hardware Cenfigur-

atien . . « ¢« ¢ ¢ o o o

2.4.2 UNIX Operating System

2.4.3 Applicatiens Software

SYNOPSIS OF TOPICAL DOCUMENTS

AFES SYSTEM STRUCTURE

INTRODUCTION,

AFES FILE STRUCTURE .

3.2.1 UNIX Files.

3.2.2 User Directeries.

3.2.3 AFES Directeries.

3.2.4 Image Files . . .

PROGRAM DEVELOPMENT AIDS. .

3.3.1 Video Editer. . .

3.3.3

3.3.”

3.3.5

3.3.6

3'3.7

3.4.1

3.4.2

3.5.1

3-5.2

3.5.3

3-5.“

3.5.5

Documentation Format.

Subreutine Libraries. . .

Include Files

Windew Code

Pregram Testing

Interface to Programs
Under AFES Centrel. . . .

3.4 SOFTWARE CONTROL. . . « &« &« v o« « &

Seftware Coentrel.

System Update

3.5 COMMAND STRUCTURE

Cemmand Syntax. . . « . .

Medificatiens te the Shell

Inter-Precesser Communi-

catiens ,,

Cemmand Structure for

Master Precesser.

Cemmand Structure fer

Display Precesser

3-17

3-19

3-19

3-19

3-20

3-23

3-23

3-30

3-30

3-32

3-34

3-36

3.6

3.7

4.0

u.2

4.3

DOCUMENTATION . . , .,

3.6.1 Document Types. . . .

3.6.2 Documentation Aids. .

AFES ADMINISTRATOR.

3.7.1 Adding AFES Users . .,

3.7.2 Maintaining Multiple
Releases,

3.7.3 Assuring System
Integrity

MEASUREMENT EXTRACTION AND
CLASSIFICATION. e » e & o s o .

INTRODUCTION. . & v & & = & o &

MEASUREMENT EXTRACTION.

TRAINING AND CLASSIFICATION . .

4.3.1 Mean Nearest Neighber

(mean nn)

4.3.2 Condensed Nearest
Neighber (cnds nn). .

4.3.3 Mahalanebian (mahal),

iv

3-42

3-42

3-u46

3-52

3-52

3-53

3-54

4-1

42

4-6

4-8

4-8

4-8

5.0

5.2

5.3

5.4

4.3.4 Multivariate Categerical
Analysis (meca). . « « . &

4,.3.5 Unsupervised Classificatien
(cluster) . . « ¢« ¢« « « &

SYMBOLIC IMAGE PROCESSOR.

INTRODUCTION.

THEORY OF OPERATION . . .

5.2.1 Preprecessing.

502-2 SIP- * o o s o

IMAGE REPRESENTATION. . .

5.301 Regs L]
5.3.2 Lsegs.
5.3.3 Feats.,

COMMANw *® & o o o o ¢ s o

5.4.1 Inveking SIP .,
5.4.2 LISP Commands.
5.4.3 LISP Errors, .
5.4.4 LISP Quirks. .

4-9

4-9

5-7

5-8

5-8

50"-5 sip C.mmands e o & e & o 5'-11

5.5 PRODUCTION RULES. « o o o o o o « . 5-11]
5.5.1 Rule Declaratien 5-13
E
1
5-6 SAMPLE DIALOG 'Y 5-11" H
5.7 LIMITATIONS ., . ¢ ¢ ¢ o o o o « o & 5-16
‘ 5.7.1 Representation
ﬁ Limitatiens, 5-16
5.7.2 Rule Limitatiens 5-17
5.7.3 Number ef Regiens. . . . 5-17
5.70’4 Speed. . e o e« o e e & . 5-17
6.0 AFES IMAGE PROCESSING LANGUAGE, . . 6-1
6.1 INTRODUCTION. . « ¢ o o o o o o o o 6-1
3 6- 2 TABLE STRUCTURES .] . . . Y L[] . [] - 6-1
t
' 6.3 IPLCOMMANDS. . . o v o o v oo .. 63
§ 6.3.1 Change Precessing Image
i
i (cpi)........-. 6"3
|
E 6.3.2 Change Precessing Methed
% (cm)..-....... 6-3
vi

thiar - arrmpn ™ AT - hd

rn—-w-;ﬂv.‘”.‘.-".

6.4

7.0

7.2

7.3

8.0

8.2

8.3

BOu

6.3.3 Modify Methed
(med methed)

6.3.4 Current Metheds and

Images . « « « + +

CONTROL STRUCTURE

PHOTOGRAMMETRIC SOFTWARE, . . .

INTRODUCTION.

THE AFES SYSTEM DESCRIPTION , .

7.2.1 System Requirements.
T.2.2 Maintaining Steree .
T.2.3 Mensuratien.,
T.2.4 Point Pesitiening. .

MENSURATION PACKAGE

SCANNER SUBSYSTEM « . .

INTRODUCTION. . . . « + & &+ « &

AFES SCANNER SYSTEM

PHOTOGRAPH SCANNER/VIEWER UNIT,

GRAPHICS SCANNER/XY PLOTTER . .

vii

6-4

6-5

6-6

7-3

7-4

7-5

8-1

8-5

8-7

=

.i
§

8.5 LINE ARRAY CAMERAS, + . & 8-8

8.6 VIDEO PROCESSOR e & o o * o o & s 8-9
8.7 COMPUTER CONTROL SYSTEM . . + « « « 8-12 i
';
8
I
Q.‘
¥
i

viii

e

§
i
i

LIST OF FIGURES j

Figure Page
2-1 MASTER PROCESSOR CONFIGURATION. . . 2-5]

2=2 FULL-FUNCTION STATION CONFIG-

URATION -] 2-7
41 One Dimensienal Classificatien. . . 4y ;
4-2 Twe Dimensienal Classificatien. . . 4y
g |
8-1 AFES Scanner System Diagram 8-3 ‘
8-2 AFES Scanner/Viewer Unit. . ., . . . 8-6
8-3 Video Precesser 8-11 ;
|
i
1
ix

1. INTRODUCTION
This decument describes the results of the contract entitled "Autematic
Feature Extraction System #2", RADC No. F30602-81-C-0034, It is intended te

fulfill the requirements for CLIN 0002, Data Item 007.

The AFES centract was performed between December 1980 and December 1982.

Under the terms of the effert, a duplicate copy of the testbed image
precessing system developed under contract F30602-78-C-0080, including
hardware and software, was assembled and installed at the Defense Mapping
Agency Aeronautical Center in St. Louis, Missouri. This report will describe
the system and its capabilities,

1.1 SCOPE

The AFES is designed to be a testbed for evaluation of semi-autematic and

computer-assisted techniques for automated production flow processes. Its

intended input sources include Natienal Sensors and LANDSAT imagery, and its
functienal capabilities are expandable to permit its use as an experimental
testbed for feature extractien. 1Initial AFES capabilities are applicable teo
the extraction eof planimetric, cultural, and landscape characteristics as
required for productien of Digital Feature Analysis Data (DFAD).

The system's hardware configuratien prevides for input scanning and
conversien, image storage and retrieval, interaction with multiple seftcopy
displays, feature delineation, and output pletting of feature data. The major
hardware subsystems include a hest processer which performs overall system
contrel, data acquisition and storage, and certain computatienally intense

procedures; a scanner/pletter subsystem which allews input of image data frem

film and opaque source materials and generates graphics plets; and a display
substatien which allows direct user interactien with the imagery,

1-1

[OOSR S WP

S

The AFES Seftware includes a large collection ef system and applicatiens '
modules which support a wide variety of functions. The operating system J
supperts a multi-user environment, a tr -structured file system eminently
suited to image processing, medular se{tware structure, a camplete seftware
contrel system for system and applicatiens pregrams, pregram develepment alds,
documentatien alds, and interfaces to all peripheral devices and subsystems.

Applications soeftware previded with the AFES supperts pixel measurement i
extraction; pixel classification via statistical pattern recegnitien; image
preprecessing, enhancement and filtering; image warping, resampling, and peint
positiening; and symbolic image proecessing via a rule-based inference system.

1.2 BACKGROUND

P T e

The development of technologies for expleitation ef digital imagery is
mandated by DMA transition te all-digital seurce materials by the late 1980's.
A number of research pregrams preceding and cencurrent with the AFES
develepment have addressed the use of digital imagery for the generation ef
various DMA preducts.

PRy

The RADC Image Precessing System (IPS) is a predecesser to the AFES which
prevides an interactive image precessing capability fer research related te i
feature extractien and classificatien frem recennaissance sensor imagery. The '
earliest work leading te the development of the IPS consisted ef the
integration ef a number of pattern recognition seftware medules in the late
1960's and early 1970's to ferm the On-Line Pattern Analysis and Recegnition
System (OLPARS). The system was cenfigured en a CDC-1620 cemputer with

assaciated peripherals.

In the early to mid 1970's an image-precessing frent end te previde
multivariate vecter data for input te OLPARS was develeped en a PDP-11/20
minicemputer,. Software included a custom designed eperating system,

executive, and large library ef application functiens mest ef which were

written in assembly language. This system was initially called the Image

Feature Extraction System (IFES). A separate effort called Spectral
Cembinatiens for Reconnaissance Expleitatien (SCORE) added multispectral
seftware te IFES, and the cembined system was renamed Digital Interactive
Cemplex for Image Feature Extraction and Recognitien (DICIFER). This total
package was a display-eriented minicemputer system dedicated to developing,

testing, and evaluating techniques fer imagery expleitation. It was used for

precessing of black and white and multispectral recennaissance photography,
side-leeking synthetic aperture radar imagery, forward-leoking infrared
imagery, LANDSAT imagery, and several other types eof twoe-dimensienal array
data. The additien ef OLPARS structure analysis and classification logic te
DICIFER resulted in a cemplete pattern analysis capability based upon image
data. This system has since beceme known as the Image Precessing System
(IPS).

The current IPS hardware cenfiguration is the standard AFES cenfiguratien
(less the scanner/pletter subsystem), consisting ef a PDP-11/70 and PDP-11/34,
with mass sterage, special precessing, and display peripherals apprepriate to
suppert the AFES software. Current centractual efforts such as Advanced
Pattern Recegnitien (F30602-80-C-0319) are deveted te enhancement of AFES
target recegnitien capabilities. The AFES contrel structure is being modified
and additienal applicatiens seftware is being added te apply statistical
pattern recegnitien to region measurements. Edge-based image segmentatien
algerithms are being added, and the AFES Symbelic Image Precessor (SIP) is
being expanded te accommedate mere flexible interaction between symbelic and

statistical pattern recegnitien algerithms.

1.3 TEST RESULTS

This section details the results ef the AFES #2 Final Acceptance testing,
which was perfermed during the menths ef August and September, 1982. Since
the software was a copy of that develeped and tested under the eriginal AFES
centract, the AFES #2 tests consisted of executing selected AFES seftware

precesses which were censidered te be capable of demenstrating the preper

ITTITT AT, W TN e Xt

eperatien of the hardware cempenents. The testing was perfermed during twe,
ene-week periods, with the test precedures concentrating on the following
hardware medules:

1. Scanner/Pletter Subsystem Testing.

2. Image and Graphics Displays.

3. AP120B Array Precesser.

4., Threshold Techneleogy Veice Recegnizer.

5. Coler Camera System,
The proeper operation of the main computer systems was assumed te be indicated
by the successful executien ef the processes used in testing the specific
system cemponents listed abeve.

All tests on the system, exclusive of the scanner/pletter subsystem, were
cempleted successfully during the first week of testing. Several miner
preblems were encountered with the scanner/pletter subsystem that required
some remedial work followed by a secend week of tests. The following

subsectien discusses these preblems.

1.3.1 Scanner/Plotter Subsystem

The testing en the scanner/pletter subsystem continued threughout the
entire two week test peried. During the first week several miner problems
were enceuntered which were beth hardware and seftware related,

Initial tests that covered interioer erientation and serve ceontrel were
successfully accemplished. The first preblem surfaced when an attempt was
made te remetely centrel the scanner operatien frem the PDP-11/70. Altheugh

cemmunication was pessible, it was very intermittent and neisy. The preblem

1-4

LY Y et

.)

OOy 20, xirum

was lecated in the 1interface cables between the PDP-11/70 and the
scanner/pletter PDP-11/34., The cables were medified which rectified the
preblem,

The secend preblem was caused by the RP06 disk drive that was dual ported
between the scanner/pletter PDP-11/34 and the PDP-11/70. On the PDP-11/34
side the disk ceuld be written but net read. 1Initial symptems seemed to
indicate that the disk had been cerrupted se it was regenerated frem backup
tape. When this did net selve the preblem it was evident that a hardware
preblem existed. The treuble was lecated in the drive itself and repairs were

accemplished.

Having solved the disk preblem, a scan was performed. Visual assessment
of the digitized image indicated beth skew and stage motien preblems. The
source of these problems ceuld net be immediately lecated within the time
remaining in the first week. Further investigation was performed the
following week and it was discevered that the file en the RP0O6 in which the
calibration parameters were stored centained incerrect data. It was feund
that during previeus attempts te selve the disk problems by restering from
backup tape, an incerrect cepy of the calibratien data had been used. The
version of the file that was restored was feund te centain the parameter file
from the scanner/pletter system at DMA-HTC which was incerrect for the AFES #2
scanner. The cerrect data was then leaded and the scanner was recalibrated

which selved the preblems.

Formal testing was then resumed. Shortly thereafter the fleating mark
lamp in the scanner burned out and a new ene had to be installed. Following
that repair, resolutien tests were successfully performed. However, the
center peint was off by appreximately five pixels. This was feund te be due
te the fleating mark being slightly eut of calibratien. The fleating mark was

then recalibrated and the preblem was selved.

e — .t

The next tests revealed that scanned areas adjacent in the Y axis were
net centigueus. It was theerized that a slight stage calibratien preblem may
exist se it was then recalibrated. Subsequent scans revealed that, in
fact, had been the preblem.

Pletter tests were cempletely successful. An initial preblem eccurred
due te an incerrect termination in the data file used for the tests. When the
file was preperly terminated the preblem was selved.

Particular attention was paid te the pletter pen helder since it had
exhibited a tendency te stick during preliminary acceptance testing. Since
those tests the helder had been repaired and in ne instance did this preblem

recur.

Early in the scanner/pletter tests an indicater lamp failure eccurred in
the Y serve select switch on both the scanner and the pletter. This preblem
was feund te be caused by the failure of a line driver asseciated with these

switches. It was repaired and the lamps eperated preperly.

1.4 REPORT ORGANIZATION

The remainder of this repert is deveted te detailed descriptiens ef the
major components of the AFES, The sectiens which follew are available en-line
en the AFES as topical decuments. A 1list ef available decuments may be

obtained by entering the command "doc" with ne arguments,

Sectien 2 is an everview of the entire AFES system, and prevides a brief
summary of its hardware and software structure and capabilities, Sectioen 3
describes the utilizatien ef UNIX system facilities, including seftware
centrol and on-line decumentatien., Sectien 4 is entitled Statistical Pattern
Recagnitien, and describes the varieus types ef pixel measurement extracters
and statistical classifiers available on the AFES. A legical centinuatien eof
image expleitatien is previded in Sectien 5, which covers the AFES Symbelic

!
t
{
N
|
r’?
b

Image Precesser (SIP), which is a rule based inference system for high level
classificatien ef features. Sectien 6 discusses the AFES Image Precessing
Language, which 1is the primary centrel structure fer image expleitatien
experiments., The warping, resampling, and mensuration seftware are covered in
Sectien 7, entitled Phetegrammetric Seftware. Finally, Section 8 is a
descriptien ef the Scanner/Plotter Subsystem. It is derived frem off-line

decumentation ef the subsystem, which was built under subcentract by Bendix
Research Laberateries. Appendix I 1lists the user commands available for

executien ef AFES applicatiens seftware,

[or—sr—eraa

2. AFES OVERVIEW

2.1 INTRODUCTION

This section presents an overview of the Automatic Feature Extraction
System (AFES), and serves as a directory to a series of topical documents
which describe the theory and implementation of varieus system compenents.
The purpese and general geals of AFES will be described first, followed by
discussions of its everall structure, and finally by a synopsis ef the topical

documents.

2.2 AFES PURPOSE

The AFES is an integrated hardware/seftware complex. It is designed as a
testbed for applying image preocessing, photogrammetry, pattern recognition,
and artificial-intelligence-derived techniques for semi-automatic map
generating and updating. The AFES has been designed as a complete man-machine
system for image understanding and efficient receiver of algoerithms. The AFES
possesses facilities for easily reimplementing, integrating and testing
algorithms develeped elsewhere, as well as new algerithms, The system is
capable of handling beth digital and film sources. It alse centains elaberate
facilities for image input and sterage, and can be operated by persons
unfamiliar with computers. Accordingly, streng emphasis has been placed
throughout its development on such things as medularity, user interfaces, and
software suppert. These goals will be discussed in more detail in the next
section,

2.3 AFES GOALS

The AFES design specifications require that it be a multi-user system
which is easily modifiable, medular, and independent of image source.

2.3.1 Multi-user Facility

Multi-user implies that expensive resources can be fully utilized by

! sharing ameng users., This has been accomplished by use of a work station

! configuration, in which each user has, for his exclusive use, interactive
devices and minimal computational capabilities appropriate te his task.

Resources shared with other users, including mass storage devices, special

types of processers, and image input devices, are controlled by a central

processor which is linked to a number of work statiens,

2.3.2 Easily Medifiable

Easily modifiable means that:

e new algorithms can be easily developed and easily incorperated inte any

part of the system.

e new algorithms can easily use all techniques and algorithms which have

been previously implemented on the system.

e new processes can be easily structured from a variety of algorithms arnd

techniques.

2.3.3 Modularity

Modularity implies that:
‘ e Previously programmed techniques are available to new algorithms.

e Processes may be reconfigured from varieus modules so that these

processes can execute on various processors available within the system.

Different flavors of processing can be easily developed.

e System design, implementatien, maintenance and medification may be clean
and efficient.

2.3.4 Independence Frem Image Seurce

AFES must be independent from its image source in order to retain
compatibility with all present and future image sources which it may be used
to exploit. While each new image seurce may require a different hardware
device to digitize the image data and different seftware medules for image
queing and formatting, the result of the input process will be images in
standard AFES file format. The AFES file format has been designed for maximum
versatility, and accommodates both single channel and multichannel imagery.

Eventual compatibility with all available digital imagery is an AFES geal.
2.4 OVERALL AFES STRUCTURE

This section will present more detailed information about the AFES
workstation configuration, software system, executive contrel, preogram

development aids, and applications seftware.

2.4.1 AFES Hardware Cenfiguration

The AFES hardware can best be described in terms of three main
categories; these are the master preocesser, the workstation cenfiguration, and
the scanner-plotter subsystem. The master precesser functiens as the vehicle
for program development, data storage, and many processing operations. The
workstation concept preovides for a set of dedicated interactive devices for
each user, The type of workstatien used depends en the eperator's task. 1In
general a rumber of workstations will be linked to one master processor which
allocates shared resources among users. The workstatien coenfiguration
provides the main human-machine interface for the accomplishment of image

exploitation. The scanner-plotter subsystem is dedicated to the input/output

of seurce image data, as well as cartographic data generated from processed

i
;
!

imagery. The scanner-plotter subsystem is included in Figure 2-1 as part of
the master processor cenfiguration. However because of its unique hardware and

impoertance it will be discussed separately.

2.4.1.1 Master Processor

The master processer is a PDP-11/70 minicomputer with a variety cf I/O
devices, storage units and processing resources (Figure 2-1). Input images
may be previded on magnetic tape, and tape drives are provided for access and
copying of image data. The design includes a scanner-plotter subsystem which
is linked to the processoer via a communication link and a dual-ported disk
system se that film, map, or chart data may be digitized and stored on the
disk, and utilized by the system as needed. A second large capacity disk
system stores source images and intermediate results of image processing
functions executed on the master precessor. Processing resources include, in
additien te the capabilities of the PDP-11/70, a floating point array
processor which is used to perform certain types of tasks involving numerical
computation eon large blecks of data.

Asseciated with the master precessor is the Program Development Station (PDS).
The PDS consists simply of a CRT terminal which is linked to the master
processer., It is designed for the user who simply wishes to edit and compile
programs, and to execute pregrams on the master processor for which image
display eutput is not needed. The multi-user, time-sharing operating system
used for the master processer can accommedate a 1large number of these

terminals without noticeable degradatien in response time.

2.4.1.2 Work Station

The hierarchy of work stations provided seeks to match the hardware
configuration used with the task to be performed. The types of workstations
have been termed the Full Function Station (FFS) and the previocusly
discussed Program Development Station (PDS).

L]

NOILVUNOIANOD HOSSIO0Ud HALSYN
T-Z 2an314

ADVUOLS ViVA FOVRI

2044

NOILVLS
ANINJOVIASC
nYUoOUd

=) =]
L6 S 5F

NOlL VLS

2-5

4088300u4d
AvVuuy
20T 4V

AdVl JILINOVR

NILSASENS
H31107%d
HIANNYIS

The FFS (Figure 2-2) preovides the full complement of image processing and
interaction capabilities. A ceolor display system is included, on which the
user may view source imagery or the results of processing operations. Two
high resolution monechreme display systems and a stereo viewer are preovided to
allow display of steree imagery. Each display system has a trackball,
hardware cursors with functioen buttens, and overlay memory to accommodate
operator interactien and display of auxiliary data. A Hewlett Packard Random
Scan Display accempanies the FFS., This will be used as a status display to
provide the user with relevant informatien, such as status of backgreound
processes and the name of the image that is asseciated with a particular
display channel. In addition, a Dunn color camera system is interfaced to the
color display so that hardcopy of source or processed imagery is preducible in
an efficient, convenient and timely manner, The FFS configuration provides
the enviromment necessary for integrated testing of image processing functions
and design and implementation of the types of software systems envisioned for
preduction of digital maps. The display system is controlled by a PDP-11/34
display precesser which alse provides a minimal processing capability. In
particular, operatiens which require frequent and/or random access to image
data, but do not perform complex computations are well suited to execution on
the display processer. These may include such things as histoegram
cemputatien, contrast modification, edge detection, simple geometric
transformations, and other preprecessing or enhancement operations. Image
data may be transferred te and from the master processer via a high speed
parallel data link.

Facilities for operator interactien for the FFS are designed to minimize
the knewledge r(quired to use the system. Commands issued by the werkstation
user may refer to processes which are executed on the master processor or the
display processo-. To simplify operation incoming commands are automatically
sorted by the d’splay processor's command interpretor. Those which run on the
display processor are executed immediately, while others are transferred to

the master precessor's command interpretor,

2-6

PR

v e e

NHOILYHYNOIINOGD NOILYLS NOILONNS-TINS

Z-z 2N314
WAMAIA 03¥BLS

CTELTE]

SNOL11iNG NOILONAY _ _

\a e ¥0109 |

. i usia s1IvaNOYHL
AvViasia tonu
Jindvuo ey (el f auvoaaax || jAVIdSia AvVid8ia Avidsia
ooy @ ﬂ g 72108809 [| 40109 | |amounsonon| |amounsonon

YTOIXEZOL / 0 L¥ 20 208

2-7

AYONIN
aQUOMOTNN-¥9

H088350ud)
ANiod vo/is dad Auonan
ONILYO T4 TELE

[60ssadoud]
934V

0L/44 dad

In general, pregrams which require operator interactiorn are executed on
the display processer. In sSome cases a single command may start a process on
the display processer which will interact with the user to obtain input data
or parameters, then start a "batch" type process on the master processor to
perform a computation using the user's input data. Most user interaction

occurs via trackballs, cursers, and pushbuttens.

An additional interactive device is a veice recegnizer, which may be
trained by each operator to interpret simple vecal commands and issue the
appropriate character strings te the display processor. This allews the
operator to enter commands when both hands are occupied controlling
trackballs.

2.4.1.3 Scanner-Plotter Subsystem

The scanner-plotter subsystem corsists of the scanner viewer, plotter
scanner, A/D converter, and PDP 11/34 controller with dual floppy and RP0O6
disk drives, The scanner viewer consists of two 9 X 18 inch stages, which
have optics for scanning or viewing images directly. The scanner for each
stage consists of a 1024 element CCD array with zoom optics and rotation
capability. It will allow a scarn of a 1024 by n pixel image with spot size
ranging from 5 to 30 microns continuously. The stages can move at different
rates in both x and y directions , allowing skew, rotation, positioning and
scale change of the scanned image when coupled with the other features. The

grey scale repeatability is one part in 256.

The plotter-scanner is a high accuracy plotter with CCD camera mounted in the
pen gantry for scanning of map data. The system will scan opaque or
transparency maps. The scale and rotation of the map scanner is fixed with
spot size being 80 microns. The plotter can utilize pen scribe. The scan time
for the scanner viewing is 8 seconds for a 1024 by 1024 pixel image, while the

scan time for the plotter-scanner is about 17 seconds.

2-8

}
:

The requests for scans are normally initiated from the PDP 11/70 master

precessor.

2.4,2 UNIX Operating System

The UNIX operating system has been used te provide multi-user time
sharing capability. UNIX provides a convenient file structure which supports
independence from the image source, an impertant AFES feature. The UNIX

operating system was alse desigrned to support medularity and ease of
development. The "Programmer's Workbench" (PWB) version of UNIX has been used
for AFES. PWB/UNIX provides the following features particularly important in
its application to AFES:

e A hierarchical file system.

e A flexible, easy-to-use command language.

e Ability to execute sequential and background processes.

® The Ned Editor-- a powerful text editor.

e Flexible document preparation and text precessing systems.

e Extensive software control capabilities.

e A high-level programming larguage coenducive to structured programming
i
).

e The other programming languages LISP and FORTRAN.

o Powerful system I/0 routines,

A number of these features will be described in more detail below.

T RIX L N TR T &

Sy

2.4,2.1 UNIX File System

A

The PWB/UNIX file system consists of a highly uniform set of directories
and files arranged in a hierarchical tree structure. Each node in the tree is

either a file or a directory: if it is a directory it may have branches to

lower level nodes. If ene considers a node in the directory tree to be a
directery called "dname", then entries in this directory are referred to by a
"pathname", for which the entries in dname would be "drname/namel",
"dname/name2", etc. Here "namel1"™ and "name2" may be directories or files,
The UNIX file system has as its reoot rede a directory containing names of a
large number of other directories, each of which contain a hierarchy of other
directories and files. This provides a systematic organizational structure.

Basic features of the file system are:

e Simple, consistent naming cenventions. Names may be absolute or relative

TR, T TR g - e ey e - -

te any directory in the tree.]
e Mountable and de-mountable file systems and volumes. }
e File linking acress directories.

e Autematic file space allocatieon and de-allocation transparent to the i

user.

e Flexible file and directory protection modes. Directories and files are
uniquely associated with a particular user, Both image and user files |
are coded as to access privileges, with the code indicating read, write,
and execute privileges te the file owner, a specified group of users, or

to all users. This access contrel provides file protection and assumes

an impertant role in the UNIX software control system.

e Facilities for creating, accessing, moving, and precessing files,
directories, or sets of these in a simple, uniform way.

o Treatment ef each physical I/0 device, ranging frem interactive terminals

to main memory, as a file, allewing uniform file and device 1/0.

2.4,2,2 UNIX Shell

The UNIX command language, called the Shell, is used to implement the
AFES "Image Processing Language", which controls file access and user
processes, and greatly simplifies execution of image processing functions.
The capability for backgreund processes provides for a smoother process flow
in execution eof statistical pattern recognition routines on images, since some
processes, such as classification, can be run in the backgreund while the

eperator is using the terminal for ether reutines.

The UNIX Shell language also allews the user to define a wide variety of
variables which may be used to simplify cemmand structure. For instance, a
user wishing to use the paradigm suppoert seftware for statistical pattern
recognition may define a "warking image" with which he wishes to experiment.
The pathname of this image is saved as a variable which may be accessed by
Shell routines which use the werking image as input. Thus the user need not
specify a possibly leng and cemplicated pathname each time he executes a
cemmand which operates n the working image. Twe files, .afesinit and
.envinit, set up the proper AFES enviremment for a particular user, by

initializing many ef the necessary shell variables.
2.4.2.3 System I/0 Routines
UNIX prevides standard input and output files which are used whenever

possible. The user may specify any file or terminal te be used as standard
input or eutput, or may transfer the output eof one pregram directly to the

input of anether using these standard I/0 facilities.

-

2.4.2.4 AFES Seftware

The AFES seftware has been designed te support the features outlined in
Section 3. This invelves a discussien of the AFES file system, programming

access and aids, and applicatiens software.

2.4.2.5 AFES Commands

It is appropriate to mention AFES commands at this point as they will be
referred to in the sections which follow. A more detailed discussion can be

found under Applications Pregrams.

AFES commands are executable files which can be written in the Shell
command language or "C". They are organized in "menus" according te the
function they perform, and constitute compornents of the AFES "Image Processing
Language". It should be noted that most menu commands with the exception of
those in the "meas" section of the menu are shell files. The topical document

IPL describes the Image Processing Language in detail.

Command language routines, written in the Shell command language, may in
turn start up other system and applicatien pregrams. These routines may be
written in LISP, FORTRAN, "C", or shell. This capability greatly simplifies
command string structure, since the command language routine can execute the
proper sequence of executable modules based upon a simple set of flags and

arguments provided by the user.

2.4.2.6 AFES File System

The AFES file system is based on the standard UNIX file system, and many
AFES features are achieved through careful organization and implementatien of
file structures. As in UNIX, the AFES file system also makes use of a root
directory "/", appropriately called the roet. Entries irn the AFES root

directory include, among others, working directories for temporary storage of

-

D TN N AL RO T

-~
.

NS

-

. -~
- SN

image files during processing sessioens such as "/w", "/u", which branches down
to persenal user files, "/usr", which contains system routines, and "/tmp",
which contains temporary files. The reet node directories mest important te
AFES are the /u, and werking directeries. The /u directery will be described
in sections which fellow.

2.4,2.6.1 AFES Directory

The AFES utility and applications programs are all contained in a user
directory which has the pathname "/u/afes"”. There are a large number of

directories under /u/afes; they include the following:

cmd Program development cemmands

bin AFES administrater commands

inecl$z Include files for the current testbed system, release rno.
$z

bing$z Master precessor command language (Shell) routines,

release ne., $z

system System wutilities such as contrel commands fer the

interprocessoer link

libsz Master precessor library routines, release no. $z
objsz Master precessor executable modules, release no. $z
smlib$z Workstatien (PDP-11/34) library routines, release no. $z

smobj$z Workstation (PDP-11/34) executable modules, release ne. $z

smbkg$z Files which are to be run in backgreund at the
workstation, release no. $z

sces All files placed under AFES control via the "addfile"
command

smbin$z Workstation command language (Shell) routines, release no.
$z

Library routines are subroutines used by many programs, which are combined
with the calling program to make an executable module. Object medules are
compiled versions of main programs. Separate library and object directories
are provided for the master preocessor and the workstation processor. While
the workstation routines are maintained by the same software control system as
the master processor routines, they are compiled in a slightly different way

due to differences in the capabilities of the processors.

The topical document "afeslayout" provides a more detailed description ef the
layeut of directories for the AFES testbed. Successive updates of the AFES
seftware, incorporating new programs and changes to existing programs, give
rise to new release numbers. "$z" is a Shell variable which centains the
current release number. Hence "/u/afes/lib$z" is the pathname to master

processor library routines for the latest AFES release.

2.4.2.6.2 User File Directory

Each user has a personal directory containing programs under development.
These are usually maintained under the "/u" root node. While this directory

may contain only names of various files, it more often contains names of other

directories which divide the user files into categories.

—

RIS PIIN N, e

S

2.4.2.6.3 Image File Directory

The image directories lead to a tree of image files. The sequefnce of
directery noedes in the working image directories are desigred to be a highly
organized recerd of all proecesses which have been executed on an image. This
directery structure may be reviewed with the "examine" cemmand, which allows
the operater to interactively examine the directoery structure. Automatic
restart capability is proevided by storage of all status information in the
file structure so that a particular precessing environmert can be

autoematically inveked when a user logs ento the system.

2.4.2.7 AFES Programming Aids and Practices

The goals of medularity and easy modifiability are attained through
careful structuring of pregrams, attention te co-sistent doecumentation,
utilization of system, library and interface routines, standard image formats,

and strict seftware ceontreol.

2.4.2.7.1 Program Structure

AFES applications pregrams are written in a way which allows maximum
flexibility and versatility. Standard seftware interface routines are used
whenever possible, such as the "automatic window" cede, described in a later
section. Subreutines are written te previde as much application independence
as possible, se that they can be used by a large number of pregrams, thus

minimizing the number of subreutines,
2.4,2.7.2 Software Interfaces

One cemmon type of user program anticipated in use of AFES as a test-bed
system is the measurement extraction routine which uses as its input the

intensity of a single pixel, or perhaps the intensities of pixels contained

within a small window surrounding a single pixel. The user is usually

2-15

T e

o — o e

é

cencerned largely with the reutine which operates on the pixels within the
window, and would rather net have to worry about the mecharics of moving the
windew througheut the image. Routines of this type may perform, for example,
smoothing, edge enhancement, or texture description operations. To meet this
need AFES provides a number of include files, referred to collectively as the
"autematic window cede", which may be inserted in the user window processing
code. This autematic window code interprets the program parameter string to
obtain names ef input and output files, sets up memory allocation for input
and output image data, sets up the line-by-line and point-by-point loops which
meve the windew through the image, and performs all necessary data conversiens
to input and output data. Thus anyone wishing to add new measurement routines
has little more toe do than te code the algeorithm for a single window in the
image and insert the apprepriate include files. This allows for expandability
in the system. Considering the number of computatiens, window code also
executes rather quickly. Typical times for a 512 by 512 image range from

under one minute to twenty minutes.

2.4.2.7.3 Utility Subroutines

The AFES subreutine libraries include a large number of functiens which,
although they are more likely to be used by more advanced programmers, save
considerable programming time and help eliminate duplicatien of effort, and
suppoert the medular design of AFES. These reutines have applicability in the
areas of file handling, display interaction, errer handling, and rnumerical

operations, and include the following:

file locate and open image header and data files

data convert output data frem a given type to an arbitrary

format as specified in output image header

TR S

input perform I/0 for single lines of image data

matrix perferm matrix addition, multiplication, and inversion

display initialization ef DeAnza display registers; curser and
trackball interaction

error standard routines for printing error messages.

2.4.2.7.4 Standard Image Format

The 1increasing variety in types of 1image sensers available for
acquisition of mapping information has lead te a concomitant increase in image
formats. AFES achieves a good deal of its versatility be reducing image data
from all types of sources to a single, standard image format. Thus the image
processing operations are independent of image seurce, and can accommodate

beth current and future forms of imagery.

2.4.2.7.5 Software Contrel

AFES has an extensive seurce code contrel system which is maintained by
the AFES Executive. This system utilizes two UNIX components, the Source Code

Control System (SCCS) and the "Make" command, to assure system integrity.

2.4,2.7.5.1 SCCS

SCCS maintains a record of all changes which have been made to a
program's source code, making it possible to reconstruct any earlier versien
of a program at any time., Each time a user medifies one of his pregrams, he
is required to provide 2 short description ef the reasen for the change. This
generates a histerical recerd of a program's evolution. The AFES user

directory (/u/afes) centains source code for each program which is part of the

AFES system, thus preventing proliferation of multiple copies of a program

e e e e ————

P Po e

which may or may net be identical.

2.4.2.7.5.2 Make Command

The UNIX "Make" command utilizes file interdependency data in performing
recompilation of pregrams which have been moedified. When a pregram is placed
under AFES Executive ceontrel, the author specifies the names eof all
subroutines or other files which the pregram utilizes. This infermatien is
recorded in a "Makefile" placed in the same directery as the pregram. When a
file is medified the AFES Executive can pell all ef the Makefiles to find and
recompile all pregrams which depend on the file which has been modified.
Usually a recompilation is performed, giving rise te a new "release" of AFES,

after a number eof pregrams have been changed.

2.4.2.7.6 Documentation Access and Aids

Consistent and standardizatien eof documentation has been stressed in
AFES., This facilitates both development and use of documentation within the
system. First a brief description ef the types of documentation available will
be provided, followed by a look at some of the AFES/UNIX capabilities which
are used by programmers in preoduction ef decumentation. The topical decuments

"afes dec" and "prog_dev" descrives these features in detail respectively.

AFES provides several standard commands which allow the user to access
online documentation for ©programs under AFES centrol. As mentioned
previously, AFES commands are arranged in menus according to the function they
perform. Entering "menu" at a terminal will produce a list of the various
menus available, These will be explained further under Applications Software.

To gain a 1list of actual commands in a particular menu, the user should enter

"menu <section>",

e e e

i vib e
W Aa.

Every AFES menu command has a shert usage information file accessed by

executing the command "help <command name>". This cemmand prints eut (en the
user's CRT) the proper argument sequence for the cemmand, indicating which
arguments are optioenal and which are required. The tepical deocument,
"emd_syntax" describes syntax for AFES cemmands, and should be referenced
prior te using the help command.

An on-line AFES manual is alse maintained for menu cemmands, and may be
accessed by typing "man <{command name> afes". This prevides the user with
extensive documentation abeut the pregram, including argument list, functional

descriptien, files used, and related commands er reutines,

Another important seurce of infermatien is that available through the
"doc" command. Document files are present for many AFES files including main
pregrams, subroutines and include files. Menu commands may or may not have an
associated "dec"., Document files are essential because they are comprised of
the type of detailed system infermation abeut a pregram or file necessary for

making medificatiens. A decument may be ebtained by typing "doc <file named>",

The bottom 1level decumentation is previded with the program source
listing. In addition to frequent comments interspersed within the code, a
standard decumentation section, called a beilerplate, is provided at the
beginning of the pregram. This 1lists the auther's name, the files,
subroutines, and macros used, a program descriptien, the compile string, etc.
and is mest helpful in making subsequent medificatiens.

Program development aids are provided which allow the user to preduce the
necessary documentation for his pregram with a minimum of time and effort
spent. The decumentatien cemmands "dec"” and "man" operate on text files by
inveking the UNIX text precessing functien "nreff", This function performs
extensive text formatting eperatiens including autematic numbering of
subsections, printing of headings, indentatien, etec., The AFES cemmand,

"newfile”, gives the user a standard format for preductien of the nreff source

i 2,

-v—-' 1.-—-<.. - =

files, se that the decumentatien can be written by simply "filling in the

blanks" in a prestructured decument outline,

The source code documentation is written using the same type of
prestructured "beilerplate" used for man and doc files. The programmer simply
fills in all of the information required, including his name, files used,
pregram descriptien, etc. Only the in-line comments provided with the source
coede are left up te the pregrammer's persenal style.

A number of ether pregram develoepment aids have alse been provided. Aids
such as the "add_to afes" cemmand allow the user to easily add new pregrams to
the AFES seftware contrel system, and prempt the user te provide the
infermatien necessary to create entries in the preper Makefile. Cemmands are
provided which allow a user te access an existing AFES pregram, edit it, and
record the changes in the apprepriate SCCS file, namely the "editfile" and

"deltafile®™ commands.

The result ef the decumentatien suppert is that all AFES decumentatien is
preduced in a consistent fermat, and the ease of deocumentation enceurages the
pregrammer te proeduce the decumentatien cencurrent with his develepment of the
program. This helps to aveid the last-minute large-scale deocumentatien

efforts which se eften plague delivery of large seftware systems.

2.4.3 Applicatiens Seftware

AFES is a puwerful image processing system. Commands in the menu driven
system are an AFES user's key to 1image expleitatien in the testbed
environment. These censtitute the Image Precessing Language, Most commands
are accessible at beth the FFS and the PDS. However seme menu sections are
apprepriately available at one werkstation enly. Fer example, since the coler
and monechreme display meniters are interfaced te the FFS, display cemmands
are enly available at this statien. A summary ef AFES cemmands can best be

given by briefly examining the menus.

tst

input

preg

mise

meas

mens

class

symb

admin

disp

init

itt

- AFES test-bed commands, including many used in statistical

pattern recognitien,

- Commands used to enter images inte the AFES envirenment

- Program development commands

- A list of miscellaneous cemmands

- Measurement extracters

- Mensuratien cemmands

- Classifiers

- Symbolic precessing cemmands (accessible on the 11/70 only)
- AFES administrater commands (accessible on the 11/70 only)
- Display commands (accessible en the 11/34 only)

- Display initializatien coemmands (accessible on the 11/34
only)

- Commands which make use of Intensity Transfermatien Tables
(ITT's) on the DeAnza display (accessible on the 11/34 onlv)

A listing of the centents of those menus is previded by Appendix I.

2-21

- — e

T e -

2.5 SYNOPSIS OF TOPICAL DOCUMENTS

This sectien provides a list and brief description of topical decuments

provided with AFES which are designed to provide a top-level view of system

design and capabilities. Each document gives a theoretical treatment of the

particular techniques invelved, discusses their discrete-data version where

appropriate, and describes their implementation in AFES.

Tepical Documents

prog_dev

afeslayout

auto_wndw

emd_syntax

incl_file

keys e

afes_ovrv

afes doc

- Program development under AFES

- Layout of AFES directories

— A guide to construction of code using the AFES automatic

window.

- This is a description of the syntax for AFES commands

- The nature and use of include files

- Describes usage of Rand (Ned) editor

- Description of control functions for the Rand (Ned)
editor

- Automatic Feature Extraction System -~ An Overview

- An explanation of the documentation available on the

AFES

2-22

appl_preg

afes shell

dstfile

sip

afes ipl

afes_sys

im_comp

XXX

Applicatiens Pregramming Under AFES

Description of AFES modifications te the shell

-~ A descriptien and use of the display status file.

- An overview of Symbelic Image Processing on the AFES

- An overview and description of the Image Processing

Language usage and syntax.

- AFES System Structure describes in more detail the file
system software, contrel system, command structure, and

documentation.

- Image Compressien describes various techniques for image

compressioen, and AFES tools for their implementation.

The following topical deocuments are not en-line, ard are

available in hardcepy only.

Image Enhancement and Preprecessing - A theoretical discussion of image

enhancement and preprocessing, followed by its
implementation in AFES.

Measurement Extraction and Classification - This describes the AFES

Warping and

support and applicatiens seoftware for statistical pattern

recognition,

Resampling - The Warping and Resampling paper gives a
theoretical background for various types of image warping
precesses, and describes the programs provided in AFES for

warping and image registratien,

2-23

A

aX”

YR T T

e ——

3. AFES SYSTEM STRUCTURE

3.1 INTRODUCTION
This section explains the philesephy behind and implementation of the

software system, as structured for AFES, at the system programmer level. The

following topics are covered in detail in the succeeding subsections:
e File Structure
® Program development aids
o Software control
o Command structure
o Documentation system

e AFES administrator

A strong motivating force in the develepment of the AFES system has been teo
previde a framework frem which a user/pregrammer can test concepts and/er
develop programs in a simple manner, while at the same time, te enceurage him
td « follow good software develepment techniques. These techniques, which

include such things as medularity, structured pregramming, user interfaces,
on-line documentation, etc., while highly desirable, can make life tedious for
a programmer. S0, it is one of the aims of AFES to help him fellow these good
programming techniques with a minimum of a priori knowledge and effort. This
goal has been accomplished, as will be described fully, by the union of many
of the commands available within UNIX/PWB inte - highly mobile user
environment made possible by the UNIX command language, called the Shell.

3.2 AFES FILE STRUCTURE

The motivation behind the design of the AFES file system has been to
provide a file handling enviromment (be it source files, image files, or
whatever) in which the pregrammer is relieved of as many of the cumbersome
tasks such as epening and closing files, maintaining directories, insuring
file integrity, etc., as is practicable, The AFES file system accomplishes
this task by combining many of the UNIX functiens such as the shell, SCCS,

Make, to form an integrated environment fer file handling.

3.2.1 UNIX Files

From the point of view of the user, there are three kinds of files in
UNIX: erdinary disk files, directories, and special files,

3.2.1.1 Ordinary Files

A file in UNIX may consist of almest anything a user might want to place
in it., Files of text consist simply of a string of characters terminated by
an EOF character. If the text were to be displayable, for instance, newline

characters would demarcate physical lines in the display.

Binary preograms are sequences of words as they will appear in memery when
the program 1s loaded. Image files consist of a string of unsigned 8 bit
bytes which describes the intensity ef pixels to be displayed on one of the
image displays. The structure of a file is centrelled by the programs which

use them, however, not by the system.

Filenames, as supported under UNIX, must be 14 or fewer characters in
length., Under AFES they must be 12 or fewer characters, the first character

must be efther an upper or lower case alpha character and ne control er

special shell characters may occur in the name.

3.2.1.2 UNIX Directory Structure

In order for the system teo provide linkage between a physical file and
its name a directory structure is maintained. The UNIX system has a
hierarchical directery structure with the character "/" being the designated
separater between levels. The "/" , as a limiting case, refers to the root
directory frem which all searches for a path name beginning with the "/"
start. For example, to find the file named "file.c", whose complete pathname
is "/u/mike/bin/file.c", the system would search "roet" for a directory named
my", It would then search "/u" for a directery named "bin", etec., until it
either successfully lecates "file.c" or fails at seme point in the search., If
the pathname does not begin with "/", then the system will begin the search in
the user's current directory which can be determined by the "pwd" command.
When a user logs in, his current directery will be set to a unique one
assigned to him by the system manager. When he executes the "cd" command his
current directery may be changed to the argument given, ie. "cd /u/mike/tmp"
or to his login directoery if ne argument is given, ie. "cd". A new user will
be given a login directory ie., "/u/mike" which ceontains a "bin" directory as a
lower nede ie., "/u/mike/bin". The impertance these directeries play in
command executien will be discussed in section "5",

3.2.1.3 File Ownership

In UNIX the mapping previded by a directory entry between a file name and
the physical file is referred te as a "link". In the case of a nermal user,
any file he creates will have a link te it which is asseciated with his legin
name, He will determine the privileges associated with that file at the time
of creation. He may change the read/write/execute privileges via the "chmod"
command for three categories of user: ewner, greup, world. A non-directery
file may appear in several directories under pessibly different names, each of
which constitutes a 1link eof equal status te the file. With the correct

privileges the file may be medified by referring te any of the links te it.

Py

PP

.

—— -
- et

P, S

Under mest circumstances a file weuld only have one 1link te it and would be
medifiable enly by the creator of the file. Only the owner of a file, or the
"super user" may change the privileges te a file.

3.2.1.4 Special Files

Under UNIX, preogram eutput which might nermally be to a disk file may be
redirected to any device, such as a terminal, line printer, etc.. UNIX makes
this possible by the use of special files. There is a special file associated
with each device in the /dev directery. One would write to a device by
writing te the special file the same way as te any other file. A similar
capability exists for redirection of input,

3.2.2 User Directories

The important directories to the general UNIX user are as follows:

/u contains directories for each login name

/bin contains system commands

/usr - contains system reoutines, commands, and libraries
/tmp - provides directery for creation of temporary files

Two additional directories of importance te image processing in general and
AFES specifically are:

/1 - permanent storage for image files
/W - temporary storage for image files

3-4

T W

Ty

3.2.3 AFES Directories

All files which are a part of the AFES software environment, whether
seurce cede, "include file", object code etc., are maintained by the AFES
administrater in one ef the subdirecteries of "/u/afes". Two releases of afes
directeries are maintained by the administrater te suppert the cencept of on-
geing development in the higher release while maintaining a workable lower
release feor operater use., When an AFES user logs on, a shell variable "$z"
will be set te the number of the release to which he is linked. For each
directory belew which has "$z" as the suffix te the name there will,
therefore, be twe directery names which differ enly in the substitution value
of "$z". In the case of the "afes" 11/70 library directories, for instance,
their names might be "/u/afes/1lib8" and "/u/afes/1lib9", where "9" is the
release in which en-geing development takes place. The layout of the AFES
directeries is very impertant te the total picture of program develepment, so
the follewing descriptien of the directories will be useful in the sections to

follow:

(Each level of indentation represents the next level in the

! hierarchical directory) |
u |
afes j
bin i
cmd f
incl$z '
1lib$z
obj$z
bingz ‘
modules :
manuals ¥
manid Z :
mana_1 }
manm_z
documents
docA Z s
doca_e "
decf j ;
dock o :
docp_t
docu_z L9
smlib$z %
smobj$z
smbin$z F
modules
t
smbkg$z i
smemd !
sces 1
cmd i
files 4
manA_Z)
manq_l l
manm_z
docA_Z
doca_e
docf j
dock o
docp t
docu_z
fort
macreo
make
inecl

w
{
[=,]
Syt

§
i
!

AW s o e e e am s

O ———_— 4 5 e e A ———— s At e arammrm e e

The following is a descriptien ef the directeries and their contents.

e /u/afes/cmd

This directoery ceontains the pregram development commands for AFES. A
list of these commands is available via the menu command with "prog" as
section name. All of these programs are modifiable only by the AFES

administrater, and they are all shell command files. i}
e /u/afes/bin
This directory centains the AFES administrater commands. Available via

"menu admin® and medifiable and executable only by the AFES administrater

or ether shell routines. ¥

e /u/afes/incl$z 19
This directery contains the Makefile and include files for the testbed
system, All routines referencing AFES 1include files do so via

=I/u/afes/incl$z in the compile string.

e /u/afes/libs$z

This directery centains the Makefile and object files necessary to build
the AFES 11/70 1library. It 1is built by the administrater via the |}
makelib cemmand and installed in /usr/lib/libafes$z.a . This makes it]
accessible by using the -lafes$z switch in cc er 1d commands,

e /u/afes/ebj$z

This directery centains the ebject moedules necessary to build the testbed
executable modules in /u/afes/bin$z/medules. The modules will be remade

only by the administrater via afesupdate. The user may riodify the seurce

files via editfile and deltafile , but the ebject files must be remade by
the administrater.

/u/afes/bins$z

The directery for all testbed routines. All routines in this directory
are intended to be shell commands which may or may noet interface te an

executable medule in the /u/afes/bin$z/modules directory.

/u/afes/bin$z/manuals

Since manuals are very release eoriented, there is a cepy fer each
release. This directery centains sub-directories each of which centains
nroffed versions eof the man files. Each directory represents an

alphabetic range based on the first character ef the manual name.

/u/afes/bin$z/dacuments

Doc files are also release oriented se a copy eof each nroffed file This
directery contains sub-directories each of which contains nreffed
versions of the document files. Each directory represents an alphabetic

range based on the first character of the document name.

/u/afes/bin$z/modules

These are the actual testbed or measurement extraction command medules

which are built by the user, They are only updated by the administrater.

/u/afes/smlib$z

This directory contains the Makefile and object files necessary t. build
the "small" library foer the 11/34. It 43 built by the administrator via

the makelib command and installed in /usr/l1ib/libsmall$z.a . This makes

ST T T T TR R T R T R T R R T S R Tt

it accessible by using the ~1lsmall$z switch in cc er 1d commands,

/u/afes/smobj$z

This directery centains the ebject medules necessary te build the 11/34
executable medules in /u/afes/smbin$z. The medules will be remade only
by the administrater via afesupdate. The user may medify the seurce
files via editfile and deltafile , but the object files must be remade by
the administrater,.

/u/afes/smbing$z

The directory for all 11/34 shell cemmands. This directery centains all
cemmands in the testbed menu en the 11/34., These commands are down-
loaded to the 11/34 by Make to the directery /u/afes/bin$z. This
directory is in the search path fer commands fer all users en the 11/34,

/u/afes/smbin$z/medules

The directery for all 11/34 executable medules. The modules will be
down-loaded teo the 11/34 by Make te the directery /u/afes/bin$z/modules.
This directery is in the search path for commands for all users on the
11/34.

/u/afes/sccs

This directory centains enly directories as shown above., All files which
are placed under AFES centrol via the addfile command are stered by SCCS
as g-files in one of the sub-directories. The files with no suffix go in
cmd; those with ".d" in one of the doc directories; ".m" in ene of the
man directories; those with ".f" in fort; these with ".s" in macro; those
with " . k" in make; these with " .h" in incl; and those with all other
suffixes go in files. The Makefiles in the system refer to the g-files

— L e st ae >

found in the appropriate sces directory for seurce code dependency.
e /u/afes/smbkg$z

This directory coentains dummy command names which are down-leoaded to the
11/34 by Make to the directory /u/afes/smbkg$z. This directory is in the
search path for for all users on the 11/34., The shell knows to execute
these cemmands in background en the 11/70.

e /u/afes/smemd

This directory centains pregram development cemmand which are down-loaded
to the 11/34 by Make to the directory /u/afes/cmd. This directory is in
the search path fer for all users on the 11/34., This allows a user to

execute commands in the "prog" section of the menu'on the 11/34,
3.2.3.1 Source Code

As indicated in the description of /u/afes/scecs, all source cede files
(alpha-numeric files) which are placed under AFES contrel via the addfile
command are stored as SCCS read only files in one of the sub-directories of
/u/afes/sces., Once a user places one his programs under AFES controel he
relinquishes ownership of the file to the AFES administrater, He may,
however, modify the file as required by following the procedures delineated in
section U on Seoftware Control te follew, For en-line infermation concerning

source files the programmer may execute "doc preg_dev",
3.2.3.2 Object code

The term object code in the AFES environment refers to the file preduced
by the coempilation of a source code file before entering the link/lead stage.
This type of file is proeduced by using the "-c" switch with the C compiler.
In the AFES directeories 1libz, objz, smlib$z, and smobj$z this intermediate

stage of compiled code is maintained by Makefiles. The reason for this

arrangement will also be explained in section 4.

3.2.3.3 Executable Code

The next level of file we refer to is executable code which is preduced

when the apprepriate object code files and libraries are linked and external

references are resolved. These files are maintained in the AFES directories
bin$z/modules, and smbin$z/modules. The files in bin$z/medules are not
executed directly by the user but may be executed by shell reutines such as

"elassify".

Executable code available only to the AFES administrater differs frem the
testbed executable cade in that the Makefile in /u/afes/bin maintains the

commands without the intermediate object cede stage.

3.2.3.4 Executable Shell Files

These are alpha-numeric files interpreted by the shell cemmand language.
They are maintained by makefiles in certain directeries as described above.

They essentially previde the user interface to the AFES enviremment.

3.2.3.5 Libraries

Due toe hardware differences between the 11/70 and 11/34, the 1library
reutines must be compiled differently for the twe precessers., Therefore, a
library is maintained with two releases fer each precesser. For information
as to what routines are available and how te include a library in the lead

string, the AFES command 1istlib(1lsl) with the parameter afes er small may be

executed. The libraries are maintained in the directories as described above

by the makelib command which installs a cepy of the archive file libafes$z.a
and libsmall$z.a in the /usr/lib directery. This allews a user te link to the

library by typing -lafes$z or -1lsmall$z in his cempile/lead string.

3.2.3.6 Includes

The C compiler has a preprocesser which will replace a line indicared by

#include "filei.ame"

with the contents of the file "filename"., 1In AFES, include files must have
the suffix ".nh". They are all maintained by makefilez in the incl$z
directeries as described abeve. Extensive use is made of 1includes in the
Window Code which will be described irn section 3.3.5.

3.2.3.7 Documents

The term doc file refers to a file which is accessed by the dec command.
This file 1is release dependent and maintained in a sub-directory eof
/u/afes/bin$z/documents as described abeve. A doc file has a ".d" suffix
which is produced when a user executes newfile te proeduce a doc file for
either an AFES file or to create a topical decument. The version stored under
SCCS control is in NROFF format and is NROFFED before being stered in a one eof

the documents sub-directories.
3.2.3.8 Manuals

There must be a manual for each command which appears in one ef the AFES
menus. Manuals are preduced via the newfile command which will create a file
with a standard boilerplate where the name will be the same as the command
with the suffix ".m" added. This file is release dependent and maintained in
a sub-directory of /u/afes/bin$z/manuals as described above. The versien
stored under SCCS centrel is in NROFF format and is NROFFED before being

stored in one of the manuals sub-directories.

3.2.4 Image Files

There are two directories in which image files are stered in AFES: /i and
/w. The /i directory is where all permanent image files in afes are stered;
and /w is where all feature extraction and classification precessing is
performed. An image stered in the /i directory may or may not have an AFES
image header file associated with it depending on hew it was entered intoe the
directery. In order for an image te be used in the AFES enviromment it must
be in AFES standard format. The user may accomplish this task via the
enter_image(eni) cemmand. When a user is added to AFES a directory with the

name of his login is made in the /w. All image processing output will occur
under this directory as will be described in section 5. Every image created
in this hierarchical tree will have two files which describe it, a "data"
file, and a "hdr" file whose makeup is described by the doc file for

image hdr.h. The following items are included in the header:

A. ver_nr (2-word integer) - The versien number is used to flag changes in
the header se that programs will not de inexplicable things wher using a
file with an old header. Hopefully a pregram can be constructed to
update the header if this becomes necessary. The current version number
is available under the macre name "VER NR" in image hdr.h .

B. depth (2-word integer) - This is the number of lines in the image.

C. width (2-word integer) - This is the number of pixels in each line.

D. type (short) - This describes the organization of the raster data. The
following types have been defined:

1. Raw data, interleave by pixel - all data for a particular pixel is

in a contiguous chunk of sterage.

S - - =

9

L

2. Feature raster data, interleave by pixel - all data for a particular
pixel is in a contigueus chunk of sterage. (The distinctien between
the previous twe types is archaic and will be removed from future

versions.)

3. Feature raster data, band sequential - all of each component
(channel) is in a coentigueus chunk of sterage. This may be used for

files intended for the coler display.
4. All else. This will include statistics files.

n_chan (short) - This is the number of channels of image data. The
maximum allowed value of n_chan is available under the name "MAX CHAN" in

image hdr.h .

format[MAX_CHAN] - (MAX_CHAN 1-byte characters) This string gives the
format eof the vector elements, Each character in the string may be

'e' (1.byte character data),

's' (1-word short integer data),

'f' (2-word fleating peint data), er 0 (no more channels).

usage[MAX CHAN] (MAX_CHAN 1-byte characters) - This gives the usage of
vector components . Each character in the string may be

tf*' (feature),

'n' (classifier neode),

'p' (position information),

'g' (general non-image informatien, such as a covariance matrix),

or

'0' (no more channels).

1 _marg (short) - This is the number of celumns of garbage at left of

image.

3-14

[. Yy

T e

PN

I,

r_marg (shert) - This is the number of ceolumns of garbage at right of

image.

t_marg (shert) - This is the number of lines of garbage at top of image.

b_marg (shert) - This is the number of lines of garbage at bottom of

image.

t_rew (short) - This is the positien ef the top row of this image within

its source image.

1 _col (shert) - This is the positien of the left column of this image

within its source image.

tran_type (1-byte character) - This indicates the type of transformation
used te get from the pheto coordinates. Recegnized values are

'a' (affine),

'p' (projective),

'1' (1st order peolynomial),

12t (2nd order polynomial),

'3t (3rd order polynomial),

'4' (4th order polynomial), and

'5' (5th order polynomial). The maximum allowed number of
transformation parameters is available under the name "TRAN SIZE" in

image hdr.h .

tran_parm{TRAN SIZE] (TRANSIZE 2-word floeating point numbers) - These are

the parameters of the transformation frem the photo coordinates.

scale(4] (2-word floating point numbers) - Scale facter for polynomial

transformation

3.3 PROGRAM DEVELOPMENT AIDS

Program develoepment aids within AFES are geared to make a pregrammer's
task as pleasant as possible while encouraging him to develop disciplined
programming techniques. To aid in the development of a pregram are UNIX/PWB
features: a context videe editer, the structured C language, standard erreor
and I/0, system libraries, te name a few. AFES has added many features in the
area of program development, such as commands to injtialize a file with
standard decumentation formats (beilerplates) te enceurage documentatien,
additienal AFES libraries, "Window Code" {(which handles all everhead and file
manipulation for feature extractors), a simple pregram testing enviremment and

easy integration of pregrams inte the AFES envirenment.

3.3.1 Video Editor

UNIX supperts a command-driven line editer called ed which is useful in
some applicatiens. 1In additien te this editer, the RAND context editer is
available te pregrammers via the e cemmand. This pewerful editer alleows the
user to view a full screen of text while editing the file. This makes the
concept of filling out preformatted documentation (boilerplates) pessible.
The editor is used by several of the AFES cemmands to facilitate decumentation
of files and other required items. Some useful toels of this editor include
support fer multiple file windows, glebal changes, interface te external
filters, and many manipulative commands. For detailed informatioen as teo its

usage, refer to the on-line decuments for "e" and "keys_e".

3.3.2 Documentatien Format

As mentiened above, all documentatien required in AFES is preformatted.

The execution of certain AFES pregram develepment commands autematically

or with the correct beilerplate. The newfile command

brings in the beilerplate for preducing a source file in a particular
language. The boilerplates for source files are asseciated with the suffix of
the file and are maintained in the /u/afes/bin directery in the follewing
files:

afesdoc - C decumentation

featdoc - C roeutine to be written using window code
shelldoec - shell file doecumentation

lispdec - lisp decumentation

fertdoc - Fortran documentation

macrodec - assembler documentatioen

After creating the seurce routine, the user will be asked if he wishes te
create decumentatioen., If he answers yes, then a beilerplate for preducing the
appropriate documentation is entered inte the editer. The file
/u/afes/bin/manual is for manuals and /u/afes/bin/decument is for doc files.

The newfile can also be used later te create documentatien files,

3.3.3 Subroutine Libraries

The UNIX system provides a number of subroutines te aid in pregram
development. In addition te these subreutines are many which have been added
by AFES. The "cc" compiler will search the system "s" library autematically
for subroutines. To cause the search of additional libraries the pregrammer
must specify the "-lname" argument, where name is the name of a library te be
searched for a subreutine. The following is a brief descriptien ef the

libraries available, their contents, and the cempile string required.
3.3.3.1 System Library
This library contains subroutines which allow the user the most basiec

entry level into the UNIX operating system, The reutines in this library
allow him to manipulate the file system, fork and execute precess, determine

system or file status, set and catch interrupts and errors, etc., In additien

f
|
)
i

it provides a set of math functions and seome basic string manipulation

subroutines. No switch is necessary to cause this library te be searched.

3.3.3.2 String/errer/sys Library (-1lpw)

This library contains three sets of subroutines, the string set, error
set, and sys set. The string set is a comprehensive set of alpha-numeric
manipulation reutines, The errer set consists eof general-purpese error
handling, signal-setting, and signal-catching, and clean-up reutines. The sys
set of subreutines provides interfaces to system calls that process errer
conditions and call fatal()., 1In addition, a few functiens which are net
availahle elsewhere are previded.

3.3.3.3 Input/Output library (~1S)

This library is a portable I/0 package which offers the cenvenience eof
automatic buffer allocatien and oeutput flushing where apprepriate. It is, in
most cases, the preferable library for I/0 since it is system independent
where the system library is not. It is semewhat less efficient, however, due :
te buffering of I1/0,

3.3.3.4 Write Library (-lwrt)

This library consists of an interface to syswrite that handles all errer

conditiens.
3.3.3.5 Afes 11/70 Library (-lafes$z)

This library consists ef some general purpese routines, image processing
routines, image header routines, and an erreor subreoutine which should be

called by any AFES C subroeutine which generates error messages.

3.3.3.6 Afes 11/34 Library (-1lsmall$z)

1 This library consists ef subroutines which may be called by routines
which are intended to be run eon the 11/34., It consists ef matrix manipulatien

reutines, display routines, curser reutines, histegram reutines, and the error

routine.

3.3.4 Include Files

The include files available in AFES censist of, among other things, the
files necessary to suppert the Windew Code package. This package enables one
te construct a feature extraction reutine. In additien there are include
files to describe hardware in the system, such as, the DeAnza 1link and
displays. For a 1list of all the include files one may execute the
match_files(mtf) command and enter the pattern: *.h

3.3.5 Window Cede

The Window Code (as described fully in section 2 of the topical decument,
"pProgram Development Under AFES") enables a programmer to interface an image-
precessing routine with a minimum of effort, Essentially, one writes a
section of cede which processes a windew of image data and surrounds it with
the AFES include files which provide all the linkage to the data and header

for an image and perform all file manipulatiens for him.,

3.3.6 Program Testing

All pregrams written using the Window Code may be tested prier te
inclusion inte AFES by two methods. The first method is to execute the

pregram with an existing image as input and create an output image. The user

wrea e

2o e —- . IR TR - e e ia e —— s —— f—-

Py Y

may then display the output image or examine the image data directly. The
secend methed is te move the load module to his persenal "bin" directory under
$C which is searched by the shell. The user could then enter the name of the
command, be it a measurement extractor or classifier, into the method file
along with any required parameters (emitting the input and ocutput file names).
He could then execute the ext_measures(xms) command in the case of a
measurement extracteor, or train in the case of a classifier. The system will
find the user'’s version of the file in his directery and execute it as if it
were already integrated inte AFES, The same technique could be used if it had
already become part of AFES but needed modification, No ether user would be
effected until the changes were complete and the user had entered the changes
inte the system.

3.3.7 Interface to Programs Under AFES Centrel

The primary commands enabling a programmer te place a file, subroutine,
or command under AFES control, are located in the "proeg" section of the AFES

menu. The following is a list of these programs as they appear in the menu:

3-20

S e 4 PR Y T LT

The fallewing cemmands are available for afes pregram
development:

##% General Informational Commands ¥##%
help - gives syntax required to execute a UNIX/AFES
command based on the syntax descriptioen
in sectien 5 4
afestext (txt) - gives brief desecription of AFES file
taken frem the information entered by the
user when the file was first added to AFES
via the "addfile" command
man - gives detailed descriptien of either a UNIX
or AFES command. Includes explanation ef
switches and other parameters,

doc - gives program documentation for afes files !
and other topical items describing AFES. H
menu - gives listing of available commands in AFES &
#%# Basic File Inspection Commands ##%#% rs
catfile (ctf) - lists contents of AFES file to standard -
eut put A
copyfile (cpf) - get read-only copy of afes file in working &
directory y
lookfile (1kf) - look at afes file via the "e" editer i
(read-only) ']
prntfile (prf) - print listing of afes file en line printer
listlib (1sl) - list all available reutines in one of the

AFES libraries (™afes" or "small")

#8% Mjscellaneous File Inspectien Commands %##%

match files (mtf) ~ list all afes files matching a certain
pattern

what file (wtf) - list current informatien about an AFES
command, object, module, include file, etec. b
as controlled by the AFES Makefiles, ?

listdelta (1sd) -~ list all deltas {(changes) to afes file te ;
include version #, date of change,
person making change, and reason faor change

differ (dfr) ~ list the differences between two versions ef
AFES file

3-21

!
{
?
{
}

8%® File Creation Commands #&#%

newfile (nwf) - create source file with afes standard decu- ;
mentation based on the filename suffix |
add_dec (ade) - prepend afes standard decumentation te
existing source file
afesnreff(arf) - format text file (used in checking manuals,
and documents) *
spell - check spelling in text file
addfile (adf) - place file under afes SCCS centrel

add_to_afes (ata) - place file or command (te be run on 11/70)
under afes Make control
add_to_small(ats) - place file or command (te be run on 11/34)

under afes Make ceontrol

#%% File Modificatien Commands #%##

editfile (edf) - get copy of afes file for editing in werking
directory and leck out ether medificatiens
to the file

deltafile (dtf) - record changes te afes file and delete user
copy and release the file for further
medifications

killedit (ked) - cancel edit session, delete user cepy of
file from woerking directery, and release the
file for medificatioen

backup (bkp) - make a previous version of an afes file the

latest ene (all previeus versions are

restorable) i
modifytxt (mdt) - medify brief descriptien of afes file which X

was entered during executien eof the addfile

command (this informatien is used by the !

AFES libraries in preparing a descriptien ef '

available subroutines). .
listfiles (1sf) - list all afes files user is currently modify-

ing or all afes files user has ever created

or modified

All of these commands eperate within the envireomment ef "seftware contrel" as
will be explained in the next section. They proevide the true pregrammer
interface inte the AFES system.

3.4 SOFTWARE CONTROL

A significant amount of time can be, and usually is, lost in any software
development project due to insufficient contrel of pregrams during the
development, integration, and subsequent modification cycle. The greater the
number of individuals invelved, of course, the greater the impact of peer
program management. In the AFES environment all seurce files which are to be
incorporated into AFES as an include file, library routine, command, etc., are
first placed under centralized control of the AFES Administrater. There are a
large number of AFES commands to aid in this process which will be elucidated
in a later section.

3.4.1 Software Contrel

Seftware control is the mechanism by which AFES accomplishes the task of
maintaining continuity in a dynamic programming envirenmment(testbed). The
mechanics of software contreol irvolve centralized file ownership, monitoring

of file editing, and retentioen of intermediate changes (versiens) to files,

3.4,1,1 File Ownership

With any project where multiple programmers are providing input into the
system, be it system or application pregramming, one of the major ebstacles to
smooth integration is the problem of multiple versions of routines floating
around. Invariably someone needs a routine for a specific application.
Presuming he hears that someone has written such a pregram, he often cannot
locate the current version. Then if he needs to modify it even slightly he
usually creates a new file, The tendency here is for a preliferation of
special purpose programs., This does not encourage the programmer to work in a
modular environment. If many people have incerporated a reutine into their
routines then the task of update in case of change becomes enoermous, One of

the major requirements for system development to proceed at any kind ef

3-23

]
¢

reasenable pace in the above scenario is an immense overall knowledge ef the
system by a few individuals. 1If for some reason these people leave the

project, it may require months for the preject to receover.

Centralized file ownership is one of the ways AFES avoids the above
problems. All files which make up the AFES system are owned by the AFES
administrater. They are stored in one of the AFES SCCS directeries accerding
to their suffix as described in sectien 3.2 of this document. All program
development commands listed in section 3.3.7 access these files in various
ways for the programmer without requiring him te know where the actual source
files are located. He can therefore be sure he has the correct copy of the
file. He alse has many cemmands at his dispesal to determine what reutines
are available in AFES and gather infeormation about them. He is encouraged to
write routines which may be beneficial to ethers through provision of an
easy-to-use interface te the twoe AFES libraries, Easy access to all AFES
files also allows a pregrammer to explere the software to any depth desired.
The wuser may place a file under AFES SCCS controel via "addfile",
"add to_afes", or "add_to_small®, The "addfile" command merely places the
source file under the afes centralized centrol in the form of an SCCS file.

The other two commands will execute "addfile" if required.

3.4,1.2 Source Code Control System (SCCS)

Having centralized ownership of files, the next step is to ceontrel the
modification of files. This task is accemplished using the PWB product called
the Source Code Control System (SCCS). SCCS steres the original versien of a
file and all subsequent modifications te it. Any version of the file can be
proeduced by applying the modifications or "deltas" (as they are referred to by
SCCS), up to the the version desired, to the original file.

A very important concept in the AFES enviromment is that of multiple
releases. This is accomplished nicely by SCCS, In AFES two releases are

maintained at all times. The lower release is intended to be an operational

3-24

S i w6 o e e w

release at all times with the enly changes being the correction of discovered
bugs. The higher release is where program development is to take place and
may be disabled at times. When a user is added to AFES by the AFES
Administrator he is given a read-only file in his login directory with the
name ".afesinit". This file is executed upon login and every time a shell is
exec'ed. Among other things, this file sets the $z shell variable to a
default release # which is carried through by all the program development
commands. When a file is entered inte the AFES system it is assigned an SCCS
Identification string(SID) where the first number is the release to which the
user is linked. The second number is the level of the delta, which is always
equal te "1" initially. During the course of the project the program
development release will become the operational release and a new release, one
higher, will be created. One branch frem the last delta in a previous release
is allowed to develop as a pregrammer sees the requirement. The following is
an example of the evelutien of an SCCS file where the file was entered into

the system while the programmer was linked to release Y,

0 4.,2.1.2
/
/
0 4,2.1.1
/
/)
0 0 O-==i- 0 0
4.1 y,2 4,3 | 5.1 5.2
release U H release 5

The histery of the above file shows that after it was initially entered two
editfile/deltafile sequences were executed. The proegram development system
then became the operational system thus version 5.1 was made by the AFES
Administrater via the nextrls command. The programmer then went threugh the
edit sequence once while in release 5 and two more times while being linked te
release 4. The 5.2 version may have occurred before or after the 4,2.1.1 or
4,2.1.2 versions. The listdelta(lsd) command could be used to list all the

deltas or only those in the release to which the programmer is linked. The

3-25

it ke e P T TR e e — s

A R
.

49 - wre IS, WUIES. = <0 AP

Ny e e e

two releases are totally independent, however.
3.4.1.3 File Editing

When editing a file under AFES control the user always gets the latest
versien in the release to which he is linked. If he wishes some previous
version in the release to be the latest he may execute the backup cemmand. He
never loses any of the versions, however, One difference the programmer will
notice between the listing of a file he has retrieved via editfile frem the
same version retrieved via the catfile command will be the absence of any date
or time infermation in the documentation beilerplate. Instead, the programmer
will netice scme capital letters which are preceeded and follewed by the %
character. These are recegnized by SCCS and the apprepriate substitutions for
them are made when a listing of the program is requested. They previde the
programmer informatien as to the version #, the date of the listing, date eof
last update, etc.

3.4.2 System update

After a pregrammer has made changes teo a file which is under AFES centrel
he needs to be sure that the changes are reflected throughout the system,
This is accomplished by the AFES Administrater as will be fully explained in
section 8. Briefly, a file in AFES which is intended te be used in the
system, be it an include file, subroutine, or main reutine, must be placed

under AFES Make contreol. The commands to do this are add_te_afes and
add_te_small.

3.4.2.1 File dependencies
The concept of file dependency means that one entity in the system is

dependent on one or more files in the system. Whenever any ef these other

files is modified the entity needs te be updated in seme manner. The entity

3-26

e St T RS -S4 XY 7Y

LC- YNNI

P

may be no more than a file which contains the contents of two ether files; in

case of a change to either of the files, the entity is releaded with current
versions of the files. The entity may be,however, a complex executable module
which is dependent on a number of include files, library subroutines, and
other source files. If any of these files change the module must be

recompiled and loaded.
3.4.2.2 Make command

The Make command in UNIX/PWB provides a mechanism by which the system can
be kept up to date in a semi-automatic manner. The AFES Administrater is the
only one who actually executes this command and he does so indirectly via the
afesupdate or tstbed make(tst). These routines move areund in the AFES
directories and get an updated copy of the Makefile for the directeory and then
execute.the Make command. There are Makefiles for each of the two releases of
AFES maintained. The follewing is an excerpt frem the makefile for the "obj8"

directory as an example:

3-27

Y

4
#
#
#

CC = /bin/cc -q =0
= /bin/cc =0 -I2
LIB /u/afes/1ib8

INCL = /u/afes/incl8

CMD = /u/afes/sccs/cmd
FILES = /u/afes/sccs/files
FORT = /u/afes/sccs/fort
BIN = /u/afes/bin

0BJ = /u/afes/ebj8

PROG = /u/afes/cmd

APLIBS = -1V -1

WINDOW =

update : makeall

makeall :: WINDOW_INCL

WINDOW_INCL : /u/afes/incl8/image hdr.h /u/afes/incl8/wndw_init.h
/u/afes/incl8/wndw_prec, h /u/afes/incl8/wndw fin.h
/u/afes/inclB/wndw buff.h /u/afes/inclS/wndw read.h
/u/afes/incl8/wndw next.h /u/afes/incl8/wndw write.h
/u/afes/incl8/wndw _tidy.h /u/afes/1nc18/wndw end.h
/u/afes/incl8/in_cenv.h /u/afes/incl8/out_ cenv.h

echo "">WINDOW _ INCL

makeall :: WINDOW LIB

WINDOW LIB : /u/afes/lib8/if v_siz.e /u/afes/1ib8/if loc.e
/u/afes/1ib8/if r hdr.e /u/afes/1ib8/if w hdr o
/u/afes/lib8/errer.o

echo "">WINDOW LIB

makeall

makeall
efilt.o

Makefile

will make all the ebject files in /u/afes/ebj$z
This is a release dependent makefile and all pregrams
are dependent upen shell variable $z for release #.

/u/afes/obj8/WINDOW_LIB /u/afes/ebj8/WINDOW_INCL

it lapl.o

lapl.o : $(FILES)/s.lapl.c $(WINDOW) $(INCL)/image_hdr.h
$ (PROG)/copyfile lapl.c

$(CC) -c lapl.c =-I$(INCL)

-rm -f lapl.c

:: efilt.o

¢ $(FILES)/s.efilt.c $(LIB)/s _read.o $(LIB)/s_write.o
$(LIB)/if open.o $(LIB)/f1ush hdr.o $(LIB)/erreor.o

$ (PROG)/copyfile efilt.c

$(CC) ~-c efilt.c -I$(INCL)

-rm -f efilt.c

3-28

The purpese of this Makefile is teo keep the ebject code up to date for lapl.e
and efilt.e. The Makefile in bin$z will lead the aebject medule with
appropriate subreutines and libraries., The twe are maintained separately for
clarity. The lines at the beginning are comments as are any lines preceeded
by the # sign, Next are a list of macre definitiens which may be substituted)
in the bedy of the Makefile with the $(NAME) string, where NAME is the string
to the left of the "=" in the macre definitien. The first executable line of
the Makefile is always made if ne argument is given, se it is a cenventien of
AFES to have a dummy line there which is dependent en "makeall"™ which is
dependent en all the items defined in the Makefile. When "make"™ is executed,

—a

"y

all items are checked and updated as required. The single celen indicates
dependency and the double coelen allows for a centinuatien of dependencies. 1In

the case of lapl.e, it is dependent on the SCCS seurce file for 1lapl.c, the
WINDOW macre, and the include file image hdr.h. If any of these change the

make command will execute all of the lines following the line of dependencies

5

e

u} to the next item. 1In this case it will get the current cepy of lapl.c,
compile it and then remoeve the file lapl.c. In the case of efilt.e, it is
dependent on the SCCS source file for efilt.c, the afesd library routines

s _read.o, s _write, if open.e, and flush hdr.oe. The make will preoceed as with

— ey

lapl.o.

3.4.2.3 Placing a Command Under AFES Make Contrel

As mentioned earlier the two commands which allow one te place an item
under AFES make control are "add to_afes" and "add Yto_small"™. These cemplex
commands are dependent on the highly structured AFES directory layout. These
commands alleow one to start with either a high level item such as a command or
at a lower level such as an include file. If one starts with a command, the
SCCS files will be searched for the main routine or shell file as appreopriate.
If not found the routine "addfile" will be executed autematically for the

routine, The user will then be asked questiens such as file dependencies and

the same process will be repeated for all lower level reutines., Finally the
Makefiles associated with the command will be modified automatically and the

user will be prompted to add appropriate help and menu entries, If a user
wishes te medify the makefile entry for any file he may execute add to_afes or
add to_small again for that file and the makefile entry will be replaced.

3.5 COMMAND STRUCTURE

There are many command categories in the UNIX/AFES system, with the added
complexity of multiple processers., The primary UNIX feature used to solve
cemmand problems is the UNIX shell. All command searching is accomplished by
the shell, which net enly functions as a terminal cemmand interpreter, but
which may alse take as input a pregram written in shell syntax. The shell
plays an impertant rele in making the AFES command environment clean and easy
to use., Currently, the command linkage between the 11/34 display precessor
and 11/70 host cemputer is previded by the DeAnza link. The 1link supperts
remote display commands and transfer of image data between processors, as well
as, execution of commands remotely.

3.5.1 Command Syntax

In the Unix system there are some general principles foellewed in the
syntax used in command generation. However, there are contradictiens and some

inadequacies which the following AFES syntax will resolve.

All the commands in the afes system are of the Unix form:

command name parameter...

The following symbols have special meaning in describing the command syntax

via help, or man:

3-30

<>

1]

0

-al{nam>

name

The angle brackets are for grouping items
together and have the highest prierity.

The square brackets indicate te the user than
all flags or parameters enclosed are optienal
as a greup.

This is the exclusive-or operator which

is used to show the eperater when enly one
parameter or group of parameters in a given
set is allowed.

If a comment is required for increased understanding
it will be enclesed in parenthesis., They sheould be
avoided if possible.

The "dash" alene means the command should
read from standard input.

The "dash" immediately follewed by one er
more characters represents a flag which
the user must type exactly as shown. The
terminater fer the flag is a space or left
angle bracket.

This is the symbel for a flag "-a" folleowed
immediately by the user's input for "nam",ie.
-afilel , where filel is the name or a file
to be proecessed.

An item offset with spaces or "< >" jis a
parameter which the user must enter his
respense te, such as in the preceeding example.

For the current release all parameters and flags must be entered in the erder

as shown in

the help command. The following examples are given te aid in

understanding the syntax rules:

3-31

Ty et —

cmd parml parm2

cmd [parmi parm2]

cmd parm1 [parm2]

emd [parm1] parm2 #%% orpor %4#
(since the command cannet tell
whether it is parameter ene or twe if
only one is entered.)

cmd -i -j<name> parmt

emd [-i<name>] [-j] parm

emd [<-i name>] parm (name is required with the -i flag)

emd =1 |} -r

emd <~-i [-z<blecks>] [-s<sized>] > || <-e [-z<blecks>]>

3.5.2 Medificatiens te the Shell

Several changes have been made te the Interactive UNIX shell te adapt it
for use by the afes system. These changes have mestly been made to allew the
afes system to maiitain shell variables and te use the inter-precesser link,

The AFES shells are based on ISC version 3.40 shell but have been
upgraded te ISC versien 3.45. Additienal space has been allocated for parsing
(':' eperator in expressiens) te allew the use ef lenger strings.

An additienal feature has been added te the file scanning precedure in
the shell. Besides accepting ':' and ';' as legal delimiters, the afes shell
alse accepts '%'. When a file to be executed is found in a directery which is
delimited by a '%', the pregram itself is net run. Instead, the name of the
pregram 1s stered in shell variable I and a pregram named 'interface' in that
directory is executed. The use of this feature in the shell is te specify
cemmands which, when typed en the 11/34, sheuld be handled by executing the
pregram of the same name on the 11/70. The transferring of the cemmand te the
11/70 and taking care eof the eutput is done by 'interface'.

3-32

T ST Sopeay e AT T e et e

K (o, AT T SIS 4T

Afes seftware 1s dependent on the values eof varieus shell variables
including variable $z which centains the current afes release and variable $x
which has the path ef the current werking image. When certain afes pregrams
are run, the values of these shell variables in the top level shell must be
changed. This is handled by forcing 'next' commands en the shell. After the
shell executes an ‘'afeslink' coemmand (alse known as 'lnk') the shell forces a
'next $C/.afesinit' and after a 'chg_wrk' (alse 'cw') the shell forces a '"next
$C/.envinit',

> AL A

The folloewing cemmands have been added te the shell to suppert the afes
Image Processing Language(IPL):

E s

cpi phote view frame

cpm methoed id

] LAY T & o

vrb [-]

They allow the changing ef current processing image, current precessing methed
and - detail of error messages respectively, In detail, the follewing shell
variables are changed:

for cpi,

$s - set to precessing pheoto ?
$t - set to processing view

$r - set to precessing frame

$x - set to $q/$s/$t/$r

$y - set to $x

$p - set to contents of file $x/.spectral
fer cpm,

$W - set to precessing methed

The "vrb" command functions much like "opt" in that it determines the level ef

detall ef afes error messages an operater will receive. It sets the shell
variable n te accomplish this. "yrb -" wiil give the most detailed eutput and
"vrb" the least detailed.

3-33

Seme ether shell variables which are used by afes are variables $D and
$H. Variable D i3 used to stere the current date in a form used by some afes
pregrams and variable H 1s used te stere the name of the afes errer file used
te stere errer eutput for pregrams executed acress the link. The afes shell
alse has an expanded acceunting file eutput. The full command 1is written te
the acceunting file rataer than just the pregram name. This will allow users
te recover lists eof commands they have executed. If a persen would like to
repeat a series of commands er use a similar series on a different image, he

dees net have te depend Just en memery.

There is a special versien ef the afes shell called 'transh' which is
used for commands sent acress the link with the 'tran' command. This shell is
always given ene command to execute and is not expected teo read cemmands from
the terminal. All references te typing eut a prompt or typing eut the message
abeut mail have been removed aleng with the check for logout after being idle
for 15 minutes (it is never idle). This versien of the shell uses a different
startup routine (/etc/tran.init) frem the usual shell (/etc/sh.init). Also an
extra character 1is expected prepended te the argument ef the '-c' switch,
Rather than let the shell decide if it is the legin shell, the shell is
considered to be the legin shell (variable F set te 1) if the first character
in the '-¢' argument is a space (er anything except a zero) and net the legin
shell if the first character is a zere.,

3.5.3 Inter-Processor Communications

As mentioned in the preceding section, mest of the changes te the shell
were in suppert ef the inter-processor 1link between the 11/34 and the 11/70.
The 11/34 is the display station where the user may use the DeAnza displays
and any coemmands available en that precesser., All commands in the "tst®

section ef the menu are executed on the 11/70 based aen the user's current

working methed and image. If he executes one of these cemmands frem the
11/34, the mechanism is such that it is started up in backgreund much as if he

il LTINS S

|

had been on the 11/70 and executed the "run_in bkg(rib)" cemmand. He will
then be netified by mail when the process is complete and may examine the
status via the "bkg" cemmand.

The primary reutines which accomplish the link are the "tran" and "1lnd"
commands. The tran cemmand formats the request and assumes the identity of
the user executing a "tran -c", On the other side of the link the precess is
started by the "lnd" coemmand which executes a shell with the same privileges
and identity as the initiator ef the command. A reutine called "get_udata"
was added to the system to determine user identity.

The tran command passes a structure block acress the link which is
decoded by "1lnd" for execution, The type of informatien is: command,
parameters, errer file, user information. The tran -c¢ command saves the
log_info returned via the get_udata call in p->leginfo which is part of the
p->name bleck. If there is a third argument field to the "tran" command , it
is taken as a file name on the other side by "1nd" te which stdeut and stderr
are te be redirected. The 1Ind routine will ferk a version of the shell in
/bin/transh which assumes the identity given in the loginfe bleck via the
logpost() function. If there is no fourth argument te the "tran" command then
the shell will be started with $F = 1 which is like a loegin shell. Otherwise,
if there is a feurth argument to the "tran" command, the shell will then be
started with $F=0 so some of the initializatien in the .afesinit will net take
place unnecessarily for this command string. Te save time, the /bin/transh
does a next for /etc/tran.init instead of /ete/sh.init., The twe commands
which take care of the "tran" details for the user are "modlink™ and "shlink",
The "shlink" forces the shell to perform like a legin shell with all shell
knowledge. The "modlink" is faster but has mere limited knewledge.

Besides command execution, the tran command alse allows the user to
transfer a file in either directien acress the link; and to see if a file en
the other precessor is readable, writable, er is a directory.

3-35

(061 ST DOV ST o, YOI DY

e

3.5.4 Cemmand Structure fer Master Precesser

The commands available te a user depend upen the sh.init shell command
which is executed when the user legs in and when a shell is exec'ed. This
file has been modified se that .afesinit is executed if found in the user's
login directery. For AFES users, it is present and therefere executed. One
of the things dene by .afesinit is te set up the $X shell variable which is
used by the shell to determine which directories to search when a command is
entered. The ".afesinit” file is as follews:

set z = 8
set X = ":$B:/u/afes/emd:/bin:/usr/bin:/u/afes/bingz:"
if 3G = 0 set X = "$X/priv:"
set u = "/u/afes/bing$z"
set v = "$u/modules”
set q = "/w/$L"
if $F = 1 then
set ¢ = ¢
if 1 -d "$q" mkdir $q
if ! =d "$q/tmp" mkdir $q/tmp
set H = $q/tmp/.small
if "$3S" 1= transh then
if "$A™ = "" then
$v/acent name (= A
endif -
endif
next -a $C/.envinit
endif
next

As was discussed in a previous sectien the "$z" shell variable is set to the
release te which the user is linked., Fer afes users the shell searches the
following directories for commands: current direetery, user's persenal bin
directery, the AFES preogram development directeory, the system bin directery,
and the system users bin directery, and the AFES testbed directery. Given the
order of search, it is pessible for AFES er any ether user te have his ewn
versien of a system cemmand such as the "man" cemmand.

3-36

|
}

The fellowing shell variables are set at legin, any time a shell is
exec'ed, or after afeslink:

$u - afes test bed directery
$v - afes medules directery
$q -~ user's image woerk directory

The follewing are only set at login or after executing chg wrk:

$0 -~ default display is celer
$H -~ directory for stdout er stderr for remote cemmands
$A - acceunt file name for accounting system

If the shell were a login shell then ".envinit" is executed after ".afesinit".
This alse happens any time the chg wrk cemmand is executed. This is a cepy
the ".envinit" shell file:

if -r $q/.phete then
set s = <$q/.phote
endif
if -r $q/.view then
set t = <$q/.view
endif
if -r $q/.frame then
set r = <$q/.frame
endif
if -r $q/.cur_methed then
set w = <$q/.cur_method

endif
set x = "$q/$s/$t/$r"
set y = "$x"

if -r $q/.spectral then

set p = <$q/.spectral
endif
next

The follewing shell variables are set by ".envinit®™:

3-37

R . A AT T e Tem

$3 - current working phote

$t - current working view

$r - current werking frame

$w - current werking methed

$x - path te current woerking image

$y - path to image for statistical processing
$p - spectral type of current werking image

3.5.4.1 Shell Interfaces te User Pregrams

The UNIX shell is really the executive for the AFES system. Being a
powerful command interpreter, it allews for the support ef varieus paradigms
without the expense of a great deal of the preject's development time. Since
eur centrel cede can, for the most part, be wr.-ten in this high level
language, modificatiens are more easily made. The twe paradigms currently
being developed fer AFES are: statistical pattern recegnitien, and Artificial
Intelligence. The user has the cencept eof a currert werking envirenment when
he logs in. The shell is initialized to reflect this envirenment as described
above, This envirenment is maintained whether the user is logged in te the
11/70 or the 11/34. Since the input te the shell in this case is the
terminal, this is considered the foreground enviromment. The user may run
shell command files which we refer to as the Image Precessing Language(IPL) in
backgreund which set up a different envirenment but do net modify the
foregroeund. The IPL will be covered in detail in sectien 6.

3.5.4,2 Command Types
The program development cemmands, which were listed in sectien 3.7, are

available to the programmer at all times. The menu command is available te

lead the user te cemmands he may execute.

3-38

;
i
'
i

The follewing command sectiens are available via the
menu command: |

tst - Afes test-bed cemmands '3
input - entering images inte the afes enviromment 4
prog - Program develepment commands |
misc - Miscellaneous commands
meas - measurement extracters

trans - image transfermatien cemmands P
class - classifiers ;
symb - Ssymbelic precessing cemmands f
admin - Afes administrater cemmands

The type of cemmands in each of these menus will described in the feollewing
sections, 14

3.5.4.2.1 tst |

These commands allow the user to enter images for experimentation, enter
or modify a working method, change working image or methed, define measurement
sets for training, train a classifier, classify the image, examine the eutputs
of the process tree, clean up previeus output, run a process in background and
menitor its status, get runtime information for a cemmand, change processing
method or image, and execute symbolic precessing. The cemmands allow for !
small changes such as the additien eof a new region without having to
recalculate measurements fer existing regions, These shell files execute %

modules in the /u/afes/bin$z/modules directery as required.

3.5.4,2.2 Input

These commands allow a user to enter an image inte the afes format from
either the disk or Landsat tapes. This imagery can be either menochromatic eor

pelychrematic; meonescepic er stereeo.

3-39

3.5.4.,2.3 preg

These commands make up the pregram development commands cevered in
sectien 2,

3.5.4.2.% misc

These commands are a greup of general purpese commands which may aid the

user in link usage, file examinatien, or debugging.

3.5.4.2.5 meas

The term "measurement extracter®, in the statistical pattern recognition
paradigm, 1is any measurement which is applied to a sample of the data te be
classified. For image precessing, measurements are not made on individual
pixels but en a windew of these pixels with the purpese being to reduce noise.
The goal of statistical pattern recegnition is te accomplish a separation in
measurement values between visually distinet areas of the image, which are
referred to as classes, ie. trees, field, development, etc. Measurement
extraction is based on the user's current working method as will be described

in section 6.

3.5.4.2.6 trans

These commands allew a user to execute a number of transforms en the rews

and columns of a image, such as: fft, fast-hadamard, etc.

3.5.4.2.7 class

This menu centains classifiers which may be entered inte the current
working method file and trained if required and executed via the "classify"

cemmand.

3-40

|
!
[

3.5.4.2.8 symb

These commands are available to the user only after executing "sip©,

which is the rule-based symbelic preocessor.

3.5.4.2.9 admin

The AFES administrater has a number of commands at his dispesal which
enable him to maintain the AFES system.

The following commands are available to the Afes administrater:

makelib - make afes library
nextrls - creates next release of afes
inmk - Determines which files are net in Makefile
afesupdate - updates the afes commands via "make".
tstbed make(tst) - update the tstbed cemmands via "make™.
adduser - adds user to afes

(legin and type /u/afes/bin/adduser)
rmf - remove sccs file
cleanup - removes all deltas frem an afes file
makemake - make the makefiles up te date
delta priv(dtp) - list users with delta privileges to a file
add_pame(adn) - give user edf/dtf privileges te a file

3.5.5 Comma~ Structure feor Display Precesser

The command structure for the display is similar te that ef the 11/70 in
that the shell is initialized via .afesinit and .envinit en the 11/34 when the
user logs in on that processor. A cenvention has been follewed when a versien
of a shell command 1is required on beth precessers but the cede must be
different. The convention 13 te create a new file with the alpha pertien ef
the name preceded by the letters "sm". In the case of .afesinit it weuld be:
.smafesinit. The same cenventien i3 follewed for seme eof the directories
maintained by the Make command en the 11/70 but whose executable cemmands are
"tran'd" across the 1link te be executed by a user en the 11/34, This is the

341

case with the "tst"™ sectien of the menu whose commands are stered in
"/u/afes/bin$z" on beth machines but whese cede for the 11/34 is maintained in
"/u/afes/smbin$z" on the 11/70. All eof this is, of ceurse, transparent te the
user with the exception being that the menus on either system will differ

slightly.

In additien te the menus available on the 11/70, the user has the

follewing menus available on the 11/34:

disp - DeAnza display cemmands
itt - Display itt cemmands
init - Display initializatien cemmands

3.6 DOCUMENTATION

The AFES system maintains multiple levels of decumentatien en-line, where
each level 1is geared to satisfy specific needs, frem command syntax te
detailed pregram documertation., The AFES system prevides an interface te the
programmer which enceurages him te incerperate needed decumentatien and
relieves him from the task of remembering all the levels required. The end
result will be a system bLeth usable and modifiable witheut requiring one te

spend an inerdinate ameunt of time just learning the system.

3.6.1 Decument Types

There are a number eof different types ef documentatien in the AFES
system; and the access te this decumentatien varies greatly depending en the
type. The main documentation for any file will be found internally in the
file. The next level of decumentatien for a file is called a dec file, Feor a
list of commands the user has the menus by sectien. Fer each command in the
AFES system the user has access to help infermatien. If the help infermatien
is insufficient he may refer te the man file for the command. Finally, the

user has access te various tepical documents te aid in his development of

3-42

-

R R s

programs under AFES,
3.6.1.1 Source Cede Documentation

The internal seurce cede documentation is required for any seource file
under AFES centrel ether than ascii tables, such as menus, A different fermat
for documentatien exists for each type of file depending en the suffix. A
list of the fermat files for each type was given in sectien 3.2,

3.6.1.2 Decument Files

A doc file is required for every file in the AFES system other than a
shell file which appears in a menu., Shell files which appear in a menu will
only have a man file asseciated with them. A main C file which is entered in
a menu will have beth a dec file and a man file. All ether files, such as,
tables, subreutines, include files, etc. will have a dec file.
3.6.1.3 Menus

3.6.1.3.17 PDP-11/70 Menus

The following is a list of the menu files and the directeries in which
they are stered:

menupath

menut st

menumeas

menuclass
menuinput
menumisc
menutrans
menusymb

/u/afes/bin:
menuadmin

/u/afes/cmd:
menuprog

/u/afes/incls$z:
menulist

which is a 1ist ef the menu sections given to the
user if he executes "menu" witheut a sectien name.

a file used to asseciate a menu section with the
physical directery in which the menu resides.

testbed commands

measurement extracters

classifiers

image input inte the afes enviremment
miscellanesus cemmands

image transfermation cemmands

symbelic precessing commands

Administrater cemmands

pregram development

3.6.1.3.2 PDP-11/34 Menus

/u/afes/smbkg$z:

#"ﬁ‘.

(e 0, it T

3414

il

menusmlist - 1list of the menu sections given te the
user if he executes "menu" without a sectien name,

menusmpreg - pregram development cemmands
menusmtst - testbed commands

menumeas - measurement extracters

menuclass - classifiers

menusminput - image input inte the afes enviremment
menusmmisc - miscellaneous commands

menutrans - image transformatien cemmands

menudisp

display commands
menuitt - itt commands

menuinit - display initializatien

The user makes entries te these menus via the add _te afes and add te small
commands, but he may alse modify any eof the menu files via the
editfile/deltafile sequence if necessary.

3.6.1.4 Help Files

The following is a list of the help files and the directeries in which
they are stored AFES system:

/u/afes/bin$z:
helplist - This is the help file for all release
dependent commands in UNIX such as found
in the menu sections: tst, meas, class,

/u/afes/bin:
cmds - This is the help files for the entire
UNIX system in which all AFES pregram
development and administrater commands
are kept.

The help command in AFES tries te find the command in the "helplist”. If that

3-45

fails it executes the system help command which searches the "cmds" file., The
"helplist" can be medified by any user via editfile/deltafile if necessary.
The "cmds" can enly be medified by the administrater.

3.6.1.5 Manual Files

All of the manual files under ATES SCCS centrel are in NROFF fermat.
They can be medified in the same manner as any eother AFES file., An nreffed
version of the files, per releuse, are maintained in the /u/afes/bin$z/manuals
directory. The man cummand will execute the UNIX man cemmand for the default
directory if the user does net specify the afes section ef the manual as a
parameter. If the cemmand is net found in the system manuals then the AFES

manuals are searched for the cemmand.

3.6.1.6 Decument Files

All of the "doe" files under AFES SCCS centrel are alse in NROFF format.
They can alse be modified in the same manner as any ether AFES file., A
nroffed versien eof the files, per release, are maintained in the
/u/afes/bin$z/documents directery. The doc command will cat a cepy ef the doc

file to standard eutput(nermally the terminal).

3.6.2 Decumentatien Aids

To aid the user in the creation of all ef the documentation required by
AFES there are a number ef techniques employed. These include using a shell
interface te bring the cerrect boilerplate required for all file
documentation, be it seurce cede, dec file, or manual; integrating the NROFF
formatting reutines inte the decumentation; prempting the user for required
menu and help entries when adding a cemmand.

3.6,2.1 Beilerplate

The beilerplates for seource files are unique te the language, C, Fertran,
or shell but the infermatien required is essentially the same. The
boilerplates make use of certain SCCS variables such as date ef last
modificatien. The user will fill in the informatien as required fer his
reutine and delete the portiens which are net applicable. The cemmands which
enter him in the Ned editor with a fresh boilerplate are newfile(nwf) and
add_dec(ade)

. The add_deoc command will prepend the beilerplate te an existing file which

was noet begun by newfile.

The fellowing is a detailed descriptien ef how one would fill out the
boilerplate for a C reutine:

e FILE NAME
This is the seurce file name teo be used by the compiler eor leader
commands. It may centain several entry peints but the name of the file
may or may net be one ef them. Fer C reutines under afes, the suffix
must be ".c" with a total length eof 12 er less characters.

e VERSION

The versien number is supplied by SCCS via translatien ef the $%I%
variable. The follewing is the meaning ef the number:

release.level.branch.sequence

For afes the number is limited to one branch eff the main trunk.,

e DATE OF LISTING

I B L T

The date of the listing is alse supplied by SCCS via translatien of the
SHRSTS variables.

o PROGRAMMER

Tha persen respensible for this pregram. !
!

e e

o DATE OF LAST UPDATE

i~

Provided by SCCS via translation ef the %G%%U% variables,

e ENTRY POINTS

This is a 1list ef the entry peints, ie. main and/er functiens centained

in this file. There must be at least ene.

S S T

e INPUT/QUTPUT FILES

This is a list aof all data files which are opened by functiens within
this file. The complete pathname and the r/w mode should be included. A
description ef the data file layeut should be included in a file
accessible via the dec cemmand, For example, if a file is aopened which
follows a particular standard then list the standard by dec name.

e INCLUDE FILES

Include file names are te have the suffix ".h" and be 12 characters or
less in length. They are te be loaded by the cempliler frem the working
directory, ie. no pathnames are allowed. The variables which are
declared or defined 1inside an include file are to centain their
descriptiens within the include file and need net be repeated in the

oo

decumentation of the C pregram which references them,

3-48

e MACROS

C prevides certain language extensiens by means ef a simple macre

preprecesser. All macres defined by the "#define" compiler centrel

statement will be listed under this section and will centain cemments

describing the input arguments, if used, and the purpese of the macre.

GLOBAL DATA STRUCTURES AND VARIABLES

e

PR

Glebal data structures and variables are these which are defined eutside

any functien and are, therefore, available by the same name te many
functiens, 1If the variable is defined in anether source file, then an
extern declaratien is required. Otherwise, the variable is defined in
this sectien which is ocutside the first left brace. There will be only
vne declaration or definitien per line and a descriptien on the same
line,

PP WL, WA 6 MORE MO i i

ENTRY

This is the beginning ef the functien dependent decumentatien which will

be required for each main er functien entry 'in the seurce file., The

entry will be listed here as it is in the functien definitien statement s

prier to the first left brace of each functien., In additien, each

argument will be listed beneath the entry with one entry per line and a

cemment describing it.

ARGUMENT RETURNED

For each function there will be an explicit return, or an exit in the
case of a main entry. The type of argument returned and its pessible
values, if significant, will be listed under this heading with ene per gf
line, The default type will be integer. The type of argument will *
correspend to the functien type. :

T ot o T G

e FUNCTION -]

This sheuld be a one or twoe line explanation eof the functien of this
entry., The same thing will be used fer the addfile cemmand.

o DETAILED PROGRAM DESCRIPTION

2 o e ee ek

The first part of detailed descriptien should be the methoed of selution
or algerithm used by this reutine, if applicable. The reasen for its
existence could alse be mentioned here. Any theoretical references would
be listed here.

Next, there will be a step by step descriptien as to hew the functien eof
this reutine was performed. This will be in a structured (if then else)

YOG NN ALl

English such as: 5

prepend a "-" to the help argument
while an input line exists \
if the line begins with "-argument" [
write "argument:0
while an input line exists
if the line begins with "-"
then take geod exit
else eutput the line
end of if
end of while
end of if
end ef while

o FUNCTION CALLS

There will be two major headings under functiens; File Internal, .and File
External. Function entries defined in the same seurce file are placed
under the File Internal heading. All functiens which require explicit
inclusion by file, or by library name ("-1" flag) during cempile and lead
will be included under the File External heading, and will have the

library name follewing the variable,

3-50

¢

o COMPILE STRING

Included at this point will be the actual compile string which would be
used te preoduce an ebject file of the seurce file, er an executable

module if it has a "main™ entry peint,

e EXECUTABLE CODE

This is the main bedy ef the functien. A few additienal items may appear
at this peint before the first left brace. The actual declaration ef
static variables, the functien entry itself, and its input arguments(if
any), will appear prier to the left brace. After the left brace any
local variables will be declared. There will be one per line and each
one will have a cemment en the same line. They will be grouped by type,

ie. 1integer, char, ete. There is ne prescribed order of the groupings.

Next will begin the actual executable cede, which will centain major
comments for legical segments and miner cemments as required. The end of
each functien will be an explicit return or exit with value. All actual
code generatien should use tab indentatien cerrespending te cenditienal

levels in the cede.

3.6.2.2 Fermatting Reoutines

A major contributer te sasy decumentatien is the NROFF fermatter. This
formatter allows one to easily medify a decument, label 1levels, previde
automatic numbering ef sequential items, etc. Please refer te the off-line
manual for NROFF for details as te how te use it., All of the AFES
beilerplates are written se the user enly has te fill in the blanks. He eonly
needs to understand NROFF if he wishes te create a more detailed decument.

3.6.2.3 Prompts for Menu and Help Entries

Every cemmand which the user wishes te add te the AFES system must be
added via the "add te_afes" er "add to_small" cemmands, where add te small is
for 11/34 commands enly. These commands are essentially the same with the
difference being in the type of items one might wish te add. The enly
significance of these commands, in the area of decumentatien, is te cue the
user to add the appropriate entries in the cerrect menu and help file. This
is accomplished by entering the ned editer with the cerrect file. The user
then duplicates an entry replacing the name with the command name being

entered.
3.7 AFES ADMINISTRATOR

As mentioned briefly under Software Contrel, the AFES administrater is
the manager of AFES seftware. He is the ene whoe adds users te AFES, maintains

multiple releases of AFES seftware, and assures system integrity. His task

has been made as autematic as pessible te reduce human error te a minimum,

3.7.1 Adding AFES Users

When a user is te be added to the AFES environment the AFES administrater
must first add the user te the Unix system by creating an entry in the
/etc/passwd fil: and creating a 1login directery for him, The AFES
administrater then legs in as the user and executes the /u/afes/bin/adduser
cemmand. This cemmand will bring a cepies of the ".afesinit" and ".envinit®
files inte the user's legin directory en beth systems and make an entry in the
"everyene” file for AFES mail. The next time he logs in he has access te AFES
commands and all directeries he needs will be created.

e T ¥ S~

3.7.2 Maintaining Multiple Releases

As was mentioned earlier, the AFES administrater maintains twe releases
of AFES files and commands. The higher-number release is stered in
/u/afes/.teprelease for reference by some cemmands. One additienal release
(lower) is alse maintained. The default release is determined by the $z shell
variable which is set when ene logs in er is changed when ene executes the lnk
cemmand. The Administrater receives mail any time a file under AFES make
contrel is medified via edf/dtf. He will update the entire system via the
afesupdate command. If no ene has medified a file in the lewer release(which
is usually the case) he will se indicate when executing afesupdate. This has
the effect of changing the modificatien dates ef the leower release files
effected and ebviating any recempilation of files., 1In the upper release the
makefiles are first made via the makemake command, Next the individual AFES
directeries are remade. The libraries are updated via the makelib command.
The 11/34 must be boeted and the link established before executing afesupdate
or tst since any updated commands are dewn-leaded to the /u/afes/smbingz
directory on the 11/34,

At legical stopping places during the development ef AFES the
Administrator will decide that the higher release should beceme fixed as the
operational release and 'ne lower release deleted. He may accomplish this
task via the nextrls ce...and. He must make sure there are ne AFES files being
edited before executing this cemmand. This cemmand will do a "get -e" and
"delta" for every file in the afes system in the next higher release. It will
then make all the directeries required and cepy all the files inte these
directeries, All users will be netified toe 1link te the new release for

development ef preograms.

3-53

L T T N PR - e -

3.7.3 Assuring System Integrity

The AFES framework of SCCS/MAKE has made the job of system integrity as
Straightforward as pessible but the AFES Administrater must still be semewhat
invelved with the development ef pregrams in the AFES enviremment. He must
make sure that pregrammers are adding the preper decumentatioen at all levels
and that any changes to reutines which might affect ethers are ceerdinated.
If a user forgets te add a reutine which makes his leading fail the
Administrater must circumvent the mistake se other files which need te be
remade can preceed. At the same time he must identify the preblem to the
programmer, The AFES Administrater is the catalyst which keeps everything
running smeethly and efficiently.

AD-AT30 126 AUTOMATIC FEATURE EXTRACTION SYSTEM NO 2(UJ PAR
TECHNOLOGY CORP NEW HARTFORD NY J C LEITZ ET AL.

X JAN 83 PAR-82-19 RADC-TR-83-22 F30602-81-C-0034
UNCLASSIFIED ’ F/G 20/6 NL

10 & b

= u I gy

—_—Em
T

rr
£
ce

==
= it~
@ o

s

22 e

> |

——
———
F—

MICROCOPY RESQLUTION TEST CHART
NATIONAL BUREAU OF STANDARUS-1963-A

b,

MEASUREMENT EXTRACTION AND CLASSIFICATION

4.1 INTRODUCTION

This sectien is intended as an intreduction to statistical pattern
recognition in general, and 1its implementation in the Automatic Feature
Extraction System (AFES) in particular. It proceeds from an intreduction ef
basic concepts to the actual implementation of these cencepts within the AFES

framework.

Statistical pattern recognition is simply the implementation eof the

childhood cencept of learning by similarity. If a young child is shown

several pictures of other animals, he can recoegnize which of the animals are

degs. He recognizes them in spite ef the many differences in details between

the example dog pictures and the pictures he is subsequently asked teo

identify. The child is able te recegnize the dogs among the other animals

because their pictures are "similar" te the pictures he was initially shewn.
Hence the child perceives the essential characteristics of what is a deg and
what is not a dog. He is then able te differentiate and generalize based on
these characteristies.

Statistical pattern recegnitien is applied te image understanding and
feature extractien in a similar manner. There is, however, a significant
difference between how the child recognizes images and how the computer learns
te recognize images. The child can noermally identify for himself the
essential characteristics which make a picture of a deg really a picture of a
dog. However, in computerized statistical pattern recegnition and feature
extraction the operater or researcher must identify for the computer the
essential characteristics of the area types which are to be identified.
Indeed the selection of the characteristics which are to be measured in erder
te determine the similarity of one thing te anether is the critical step.

Once the desired measurements for determining similarity have been

selected, classification becomes straightforward.

The subsections which follow describe the processes of measurement
extraction and classification in more detail. Selection of measurement and
classification algorithms for a particular applicatien normally requires
considerable experimentation with test imagery. The AFES provides a
convenient mechanism for formulating and executing 1image expleitatien
experiments, called the AFES Image Preocessing Language. It is described in
Section 6 of this repert.

4,2 MEASUREMENT EXTRACTION

Measurement extraction 1is the assignment ef numerical values te
characteristics of objects. To mere clearly understand the cencept behind
measurement extraction, censider for a mement an example net directly related
to images. Suppose the preoblem at hand is te characterize a particular ebject
as to whether eor net it has been made eof woad. Previocusly ether examples eof
wood have been shewn to the cemputer pregram er to an individual whe must use
measurable quantities for characteristies. Characteristics which ceme to mind
might be shape, density and texture of the ebject., Shape, while it is a
characteristic of the object, would net be goed for classificatien inte woed
or not weed., Woeod can be made inte a variety of shapes as can cencrete,
plaster, plastic and eother materials. Density might well be a goed
characteristic since it is relatively easy to measure, and alse weuld serve te
separate woed frem most of the other materials listed abeve. Feeling te the
fingertips might also be a goed measurement, in the sense of discriminatioenm,
except it might be very hard te autematically reduce feeling te a number, even
though it is a measure casily distinguished by a human ebserver. Feeling then
is an example of an essential characteristic which is net easily measured by
machines for use in statistical algerithms. Measurements for cemputerized
classification must be both meaningful and efficiently implemented.

|
|

In the example of weed versus not woed, we are therefore led to density

as a goeed measure te use in classification. In some cases the use ef twe or

more measurements will yield better classificatien results, Censider the
follewing example. Suppese that we desire te sert finished weed accerding te
species of tree by imaging the weed with a TV camera. At this poeint we will
deal with only twe types of woeed--birch and ash. Hew should we preceed? We
knew for a fact that ash is usually darker in celer than birch. Therefere, we

could measure the brightness of some samples. If the average brightness value
exceeds some value or thresheld we will classify the woed as birch; if below
the thresheld we classify as ash. Once again we are classifying based en a
single measurement, yielding a measurement vecter, (x1), in ene dimensienal
measurement space. If we want te differentiate even mere accurately between
birch and ash, we can intreduce a second measurement. We alse knew that ash
has a mere preminent grain pattern than dees birch, Weed grain can be
measured threugh the 1light te dark transitiens in the sample. If this
frequency of change per unit distance is abeve some determined thresheld, the

ebject will mere likely be ash than birch. Thus, we can use grain as a
measurement, x2. Our classificatien of ash versus birch is now based en a '
vecter X, where X is cemprised ef twe compenents, x1 and x2. We say that X is

a measurement vecter in twe dimensienal measurement space.

We can noWw be mere explicit about how a cemputer actually performs
classificatien. This explanatien will alse make clear why selection of
apprepriate measurements for the classificatien precess is se impertant. In
the example given for classifying a piece of weed as either ash or birch,
based on a single measurement, we said that if brightness were abeve a certain
threshold level k, we would classify the piece as birch; etherwise the piece
would be classified as ash. This precess can be thought ef as partitiening f
the number line inte two sets, one set consisting ef all numbers abeve the !
thresheld and the other set containing the remaining numbers. |

— T 2 - NI 2 ..

This is illustrated in Fi

gure 4-1,

Set 2 (Ash) Set 1 (Birch)

- .

)

{ "

~
P

k P
Brightness

Figure 4-1 One Dimensional Classification

In the example using two measurements, brightness and grain frequency,

the classification process may be thought of as partitioning the plane into
two sets, Two pessible ways of positioning the plane are shown in Figure 4-2,

brightness

(a)
Figure

> —
(b)

4-2 Two Dimensional Classification

x1 xl

The examples illustrate the concept of "mapping into measurement space®,

The measurement space of Figure 4-1 is one dimensional and the measurement

space of Figure U-2 is

two dimensional., "Mapping into" measurement space

means locating the point in the measurement space which corresponds to the

item to be classified.

The point in measurement space is determined by the

measurements made en the ebject. Thus, in Figure 4-1, the peint marked "P"
cerrespends te a piece of weod whose brightness is a little greater than k.
The peints marked "P" in Figure 4-2(a) and U-2(b) correspend te a piece of

vwoed whese brightness and grain have appreximately equal numeric value.

Chaice eof measurements defines the measurement space, Choice and
training ef classifier partitien the defined measurement space inte sets, The }
choice of a classifier determines the general shape of the set boundaries
(i.e. straight lines, ellipses etc.) and the training precisely locates these
beundaries (i.e. slepe and intercept eof the straight 1line, centreid and
eccentricity of the ellipseid ete.). Theugh the examples were of one and two
dimensional feature spaces only, statistical pattern recegnition often is dene 5
in higher dimensien spaces. (Thus, lines become hyperplane in the general i
problem). Classificatien, per se, of an ebject is accemplished by determining ;
which set of points in measurement space centains the peint cerrespending te
the ebject to be classified.

Thus, the central rele of measurement selection can be readily

|
!
H
appreciated. If the measurements are such that peints in measurement space f
cerresponding to the same class ef ebjects cluster cleosely together and are i-
far (in measurement space) frem peints correspending to ebjects of different !
class, the precise shape and lecatien of boundaries (i.e. choice and training '
of classifier) become unimportant. If the measurement space peints fail to
meet the criteria eof same class closeness and different class separation, ne

classifier can work well.

AFES has a large number of measurement extracters available including

edge detecters, texture measures, and transferms., Below is a list ef the
measurement extracters available in the AFES, and a brief description ef their
purpese.

acf

run on the output frem mnvar, acf cemputes the
autecorrelatien among points

aredge area edge detector
athres finds the tetal area of a window above a threshold value
avg average (mean) over a window
bestfit Gradient of "best plane™ fit to 2 x 2 windew
bthres finds the tetal area of a window below a threshold value
ent_peaks Hsu texture measure which counts peaks and treughs
contr local measure of contrast
cp_hist counts peaks of a smoothed histogram of a square window
epq equal prebability quantized image
ep_smeoth perform edge preservation smeething
filt itt apply an itt transfermatien to a file
gray_crect make a correctien image froem a constant calibration image
gray_match apply a correction image to an image
hyperb calculates the hyperbelization of a histogram
int_stdv finds the standard deviatien of the intensities
lapl Four peint Laplacian
max contr finds the maximum centrast value of a window
maxint finds maximum intensity of a window
median median over a windew
mincentr finds the minimum contrast value of a windeow
minint finds minimum intensity of a windew
mitch First phase of Mitchell texture measurement
mnvar calculates the variance, statistical
difference, skewness er kurtesis of an image
moments finds the kth mement of a window
pntedge peint edge detector
rang finds the range of intensity values of a window
reberts x Roberts' cross edge detector
sebel Saobel edge detector
sumdxdy Simple gradient edge detecter
sum_peaks Hsu texture measure which sums heights of peaks
unshrp_msk apply an unsharp mask te sharpen edges of a window

4.3 TRAINING AND CLASSIFICATION

Ultimately characteristics such as these described in the preceding
section are used by a classifier to assign the input data to ene of a finite

number of categoeries., This precess is called classification. In erder te

determine the essential characteristics of some oebject, one must first preovide
samples of that object. The process of giving an example of an object i:
called training. Training is performed in cenjunction with what is termed
supervised classificatien. Unsupervised classification does net require

training, and will be discussed later.

Samples acquired fer training must meet twe criteria, They must be
separable and they should be of infermational value. Separability implies
that 1if statistical or quantitative measurements are extracted frem each
training sample, and the vecters centaining these N measurements are pletted
in N dimensienal space, areas (velumes) representative of each training sample
ir the plet should be distinet and net everlapping. The N-dimensienal space
corresponding to the N-measurements 1is, in mest Pattern Recognitien
literature, termed the "feature space". However, here we will call this space

the measurement space te aveid cenfusien with the use of "features" te

describe cartoegraphic features.

Additienally, in practice the training samples must be representative ef
the populatioen one is leeking for., If one wishes to identify coniferous trees
in an image, and uses a sample coentaining many species of trees, the sample is
net a true representatien and will result in misplaced and misshaped
partitiens., If training samples are net distinet frem each other, or de net
present the operator with informatien helpful in selving his task, subsequent
classification results may be peer and impessible te interpret. Thus, in
practical cases the selection of training samples is quite important te the

entire precess,

Once the desired measurements have been determined classificatien can
begin. As previeusly mentiened, classificatien is a decisien-making algerithm
which uses the measurement space derived threugh training te place the input
data inte the apprepriate categery or class., It shoeuld be mentiened that
several training regions may be defined for a single class, For example in
defining a class called vegetation, the user may outline samples ef beth
woadland and farmland as training regiens, 1In cases where twe or mere sample
regions are available, the measurements are cembined to form a single vecter

for the entire class.

i
|

How a classifier actually determines the categery inte which a pixel

should be placed varies with the particular classifier algerithm, Those
available under AFES will now be discussed.

4.3.1 Mean Nearest Neighber (mean.nn)

Mean Nearest Neighber is oene of the mere simple classificatien
strategies. The mean or average value is determined for each class ef
training regions based en the output of the measurement extracter(s), An
unknewn pixel may be classified by cemputing the distance between the pixel
feature value and the mean feature vectoers for the varieus classes. The pixel
will be assigned te the "clesest" categery, i.e. the class having the smallest

difference between pixel value and the vecteor.

4.3.2 Condensed Nearest Neighber (ends.nn)

Condensed Nearest Neighber uses censistent subsets ef the training
samples to perferm a Nearest Neighber classificatien. A censistent subset is
defined as a stered subset of the training sample which when used as a
reference set for the Nearest Neighber rule cerrectly classifies all remaining
pixels in the sample. An algerithm is used te determine a consistent subset
for each training regien. 1In cases where mere than ene regien is defined feor
a particular class, the subsets are cembined. The Nearest Neighber rule 1is
then applied using the differences ameng the input pixel versus the subsets to
determine the apprepriate class.

4.3.3 Mahalanebian (mahal)

The Mahalanebian classifier, as with mean nearest neighber, determines a
mean vector for each class eof training regiens. In additien the cevariance
matrix is calculated for the sample regions, previding infermation as te the
dispersien ef the data in any direction within a class, The distances between

the input pixel and the varieus classes are computed. These distances are

then nermalized according te the spread of the data in the respective class as
determined by the covariance matrix. This yields the Mahalanebis distance.
The pixel is then assigned te the class te which it is clesest using the

minimum Mahalanebis distance among the pixel and the various classes,

4.3.4 Multivariate Categerical Analysis (mca)

The Multivariate Categerical Analysis classifier 1is similar te the
Mahalanebian classifier. Compromises have been included te enhance
performance, resulting in a cheaper algerithm with respect to execution time.
For a detailed discussien ef "mca", the reader should reference "Multivariate

Categerical Analysis - Bendix Style" by Robert Dye of Bendix Corperatien.

4.3.5 Unsupervised Classificatien (cluster)

An unsupervised classifier is one that dees not utilize any training
samples., Clustering techniques greup the input data inte clusters, se that
elements in a cluster have a high degree of similarity and elements belenging
te other clusters have a large degree of dissimilarity. The technique
empleyed in the "cluster" uses a new measure of similarity called the Mutual
Neighberhoed Value (MNV). This measure considers the cenventional Nearest
Neighberheod ranks of twe samples with respect to each ether. The
conventienal Nearest Neighberheed rank is ceomputed using the Euclidean
distance. The MNV of any twoe pixels then is the sum ef the ranks with respect
to one anether., If the MNV is equal or less than seme specified threshold the
samples are grouped together inte a cluster, This algerithm is quite
versatile as it needs ne specification of the expected number of clusters, and
can discern spherical and nonspherical clusters as well as 1linearly
nonseparable clusters and clusters with unequal populatiens. Since this
explanation is broad at best the reader should reference "Disaggregative
Clustering Using The Caoncept of Mutual Nearest Neighborhooed" by K. Gowda and
G. Krishna frem "IESE Transactions on Systems, Man, and Cybernetics", Velume
SMC-8, No. 12, December 1978 for a more detailed descriptien.

4-9

This discussien ef statistical pattern recegnition has focused en
measurement and classificatien precesses, areas where researchers centinueusly
Seek mere accurate and efficient algorithms, Classification schemes which may
be trivial fer a human observer may prove nearly impessible for the cemputer,
For example lecating a military base is easily accemplished by a phote
interpreter. The ebserver focuses on pattern of buildings versus the
surrounding area. For the computer, however, ne true concept ef "centextual
clues" exists. Thus the cemputer may fecus en 1lengths eof edges and
orientatien of the image, and the computer may still have difficulties since
many characteristics of military bases such as reads and housing are similar
to civilian settlements. Yet the computer is often able te make distinctions
very difficult fer humans, such as fine changes in texture. The thrust of
research then sheuld be te incerperate those contextual clues which humans use
te perform classificatiens inte schemes plausible for machines. In this way

Wwe can take advantage of the pesitive aspects ef beth humans and cemputers.

4-10

5. SYMBOLIC IMAGE PROCESSOR

5.1 INTRODUCTION

This sectien describes "sip", a Symbelic Image Precessor. sip is a high
level interactive system designed te precess images symboelically. It is
primarily intended to be a test-bed for new pattern recognition algorithms of
a heuristic rather than a statistic nature, As such, sip is an attempt to
apply the results of Artificial Intelligence research te image expleit ‘on,

sip has been written in the LISP pregramming language. The LISF .alect
used is the University of Maryland's implementation of the Unive rv of
Wiscensin Univac 1100 LISP. It is not necessary to know LISP in orde - . use
sip. It is very helpful, nenetheless, te be somewhat familiar with it, This
is especially true in writing productien rules, for which it is suggested that
one understand LISP in some detail, Preductioen rules are cevered in greater
depth beleow.

Because sip is an experimental system and because it is written in LISP,
new users may find it difficult to get started. To alleviate this preblem, an
effort has been made to make sip a hespitable enviromment in which te precess
images. Every sip command is listed in a menu, accessible from the shell via
"menu symb”. Manuals for sip are available from the shell and frem sip via
the "man" command. Alse, a "help" command is present in sip. Finally, there
are this document and the cede itself, which is well decumented.

5.2 THEORY OF OPERATION
sip, when used to process an image, will in general be the last AFES

program to access that image. All of the mere traditienal AFES statistical

pattern recognitien should eccur before sip is run. The general processing

flow is as fellaows:

Enter image

Define a classification methed
Train and classify

Examine classification results
Edit the classified image
Preprocess the image

Run sip

We now discuss the last twe steps in greater detail.

5.2.1 Preprecessing

Image preprocessing is a prerequisite for symbolic image precessing.
Preprocessing is needed because of the way in which images are represented
symbelically. The symbelic representation of an image is very different frem
any pixel-based representatien., The exac: fermat fer symbelic representatien
is discussed below in the section entitled "IMAGE REPRESENTATION",

Preprecessing is performed on the 11/34 by a pregram called "sip preprec"

also known as "spp". sip prepreoc takes the classified current werking image
as input, This image is displayed on the DeAnza display. A series eof
pregrams; "region nam", "region atr", and "regien bnd"; 1is executed by
sip preprec. They assign names te regiens, extract region attributes, and
extract boundary information respectively. The results are transferred ever
the link te the 11/70 where sip can access them. The entire preprecessing
sequence takes roughly ten minutes, Less time is required when there are

fewer regions in the image. The user sheuld refrain frem executing any ether

cemmands that use the link while sip preprec is running.

5.2.2 SIP

Once an image has been preprocessed at the 11/34 werkstatien it may be
manipulated symbelically en the 11/70 using sip. sip must run en the 11/70
because it is written in LISP and se eccupies vast ameunts ef memery. It
weuld be desirable to run sip frem the 11/34 in erder te use the display as
processing proceeds, however this is net pessible with the current 1link

canfiguratien,

There are several actions a user can take while sip is running. He may
access, via "enter", the preproecessed image. Informatien abeut individual
regions, edges or features as well as infermatien abeut the entire image can
be computed and printed. Attributes that can be computed include area,
edgelength, average intensity, location, perimeter, and class type, Several
ad jacency relations are alse previded. Regiens may be merged tegether under
eperater contrel to define features. Better still, rules can be defined teo
recognize features; such rules are executable witheut user interventien, When
processing is cemplete the user can check his results, and save the updated
symbolic image via "stere". ‘"restere"™ can be used te retrieve a previeusly
"store”d symbeolic image. This precedure can be repeated until the desired

features have been satisfacterily recognized.

Thanks to the interactive nature ef sip, the effects of any operatien can
be verified immediately. It may happen that after performing seme eperation
it becomes necessary te undo it. There are twe ways te deo this, First, if
the symbolic image has been "stere"d and the stered versien is ekay, then

"restore"” may be used te back up. If there is ne usable stered versien then

"enter" may be used te retrieve the eriginal, unmedified symbelic image.

|

|

|

|

5.3 IMAGE REPRESENTATION }

There are two concepts central te symbelic image processing under the L
AFES that should be elaberated upen before discussing image representation.

The first concept will be called a sip ebject fer want ef a better term. It !

is an entity that represents some portion of an image. A sip ebject can he a

region, edge or feature. r#, 119 and island:13 are typical names of objects.

sip objects are the fundamental things we refer to and talk abeut in the

symbelic image domain.

The secend concept ceoncerns attributes, An attribute is a preperty
associated with an object. Some attributes of ebjects are "area"™, "class",
"includes™ etc. The attributes ef an object are stored er a preperty list
maintained by LISP. The sip function "printprops" will display the attributes
ef a sip ebject. 1In general, regions, edges and features will have different

sets of attributes. These attributes that apply to regions are: M"area",
"center", "class", "intensity", “level", "part_of". Those attributes that
apply to edges are: "edgelength", "level", "image". Only a few attributes ﬂ
apply te features. They are: "class", "includes", "part ef". To medify an
attribute one can type in LISP: i

{put 'object-name 'attribute-name 'attribute value) i

To access an attribute ene can either execute the apprepriate sip functien if

such a function exists or else type:

(get 'object-name 'attribute-name)

It may be possible to compute an attribute for a feature if the attribute

is net explicitly defined for that feature. For example, suppese there is a
feature called island:13 that includes r8. Teo find the area of island:13 sip
would first loeek for an area attribute for island:i3. Finding none, an

attempt would be made to sum the areas ef any included regions, In this case
enly r8 is included se the area of r8 weuld be the result,

Up te this peint the werds regien, edge and feature have been used
witheut being precisely defined. We now rectify this situatien., A region is
defined as a cennected set of pixels of the same class,

Each regien is surreunded by a beundary cempesed ef edges, An edge is
net a pixel ner a set of pixels; it is a set of "spaces between pixels", An
edge has one region en each side, each such regien is homegeneous with respect
te class. No edge can have the same class on beth sides. An edge can be a
laop, for example an island surreounded by water might have an edge which is a
loop.

A feature is a set of one or mere regions that have been recognized as
constituting something netewerthy. The regions in a feature are net
necessarily adjacent; a storage tank farm could censist of several separated
sterage tanks; a flotilla may consist of several separated boats. Features
can be either cultural or tepographical in nature. There is a fundamental
difference between features and regions in that features must be identified
from regiens. This can be accomplished either manually using "cembine" or

automatically using preductien rules.

There are three data structures present in sip te represent images. One,
called "regs", describes regiens; anether, called "lsegs", describes edges;
and the third, called "feats"™, describes features,

5.3.1 Regs

regs is a data structure that describes regiens., It is implemented as a
list., There is one entry in regs for each regien. Each such entry contains
the region name and a set of edges that censtitute the regien's beundary. The

edges are greuped and ordered se that the edge erder indicates which edges are

PSP VO

FONSIC0, P -t S

next te ene anether, Fer example, suppese we have a doughnut shaped region rd
whese esuter beundary censists eof 11, 12, 13, and 14; and whose inner beundary
censists ef 15. Then we woeuld find the follewing entry in regs:

(rld € (11 12 13 14) (15))

Te retrieve the entry frem regs for a particular regien, say ri, the following

LISP function can be used:

(assec 'r4 regs)

To view all of regs just type "regs" (without the quetatien marks). r0 is by
definition the rest of the world that is net in the image.

5.3.2 Lsegs

lsegs is a data structure that describes edges. It is also implemented
as a list. There is one entry for each edge. Each such entry centains the
edge name and a list of regions on either side of the edge. For example,
suppese 13 separates rd from r9. Then the follewing entry might be present in

1segs:
(13 (r4 r9))

To retrieve the entry frem lsegs for a particular edge, say 13, the following

LISP functien can be used:
(assec '13 1lsegs)

To view all of lsegs just type "lsegs" (without the quotation marks).

5-6

5.3.3 Feats

feats i3 just like regs. Only the names are changed. Features are
stored on a list with their boundaries., feats is updated by the "cembine®
functien eor by the "make" function in preductien rules. Teo retrieve the entry
in regs for a particular feature, say island:13, the fellowing LISP functien

can be used:

(assec 'island:13 feats)

To view all of feats just type "feats" (witheut the quetatien marks).

5.4 COMMANDS

5.4.1 Inveking SIP

sip is inveked frem the shell by typing "sip", eptienally fellewed by a
list of input filenames. Any such input files are read in by LISP and treated
like LISP seurce cede., Preductien rule files, if present, sheuld be leaded in
this fashion. LISP will net cemplain if a named file is net present, the file
name is just ignered.

The sip pregram itself is enly a shell interface., It first executes
"pump" te pipe seme LISP cede te initialize a few impertant file names. Then
LISP is run with $v/sip.cmp as input, along with any ether files as explained
above. $v/sip.l is the actual seource cede for symbeolic image precessing. Te
look at the cede, execute "1lkf sip.l". It is liberally cemmented., $v/sip.cmp
is the compiled version of sip.l. Compiling the seurce cede results in a

five-fold imprevement in speed.

There may be up to a 15 secoend pause after "sip" is typed before leading
i3 complete. A message will be printed and the user will find himself
communicating with the LISP interpreter.

YEXT. RTINS T XS L

Jipa-Oiie 4P

The LISP interpreter signals that it is ready by printing "Eval:". Any
sip command (er ether LISP functien) may now be typed. The cemmand will be
evaluated and the resultant value displayed before centrel returns te the LISP
interpreter. This read-eval-print cycle centinues until ene exits LISP,

5.4.2 LISP Commands

The LISP interpreter will attempt te evaluate every expressien given it.
If it is given a single variable name, called an atem in LISP, it will print
out the contents ef that atom. This is useful feor viewing regs, lsegs, feats,
classlist, or rulelist, Typing the name of an atem that has net yet been

defined is an error.

To execute a LISP functien, ene must enclese the functien name and
arguments in parentheses. Since sip cemmand are just LISP functions this is

the way sip commands get executed.

Seme functiens require that their arguments be quoted. Queting an ebject
consists of prefixing it with a single quete. Most, but net all, sip
functiers require that their arguments be queted, Failing te use a quete
where it is needed is a significant cause ef LISP errers.

5.4.3 LISP Errers

One kind of errer, leaving out a quete, was mentiened abeve. When it
eccurs LISP will usually type:

WARNING, atom-name IS UNBOUND
Help:

At this peint the LISP interpreter is cenfused and is asking fer help.
The simplest cure is te send an interrupt by hitting the rubeut key. This
tells the interpreter to forget whatever it is deing and get back te "Eval:"

g
;
!

mode.

Anether frequent error is the misspelling of atom er functien names, The
message is the same as abeve, Seo is the cure.

Fergetting the parentheses areund a function is net an errer as far as
LISP is cencerned. The interpreter treats the function name like an atem and
prints the LISP cede for that functien, This is usually net what yeu want,
As leong as LISP prompts with "Eval:" no special action needs te be taken te
get out of treuble,

There are many eother pessible LISP errer medes, moest of them
characterized by the "Help:" prempt. The safest thing te do is te send an
interrupt. An interrupt will always get LISP back tegether no matter what the

interpreter was deing.

5.4.4 LISP Quirks

Our version ef LISP is somewhat nen-standard. Here are the mere
important anemalies:

case The LISP interpreter igneres upper and lewer case distinetiens., It
is all cenverted to lower case internally. The ene exceptien is
within double quaetes, but this dees net cencern us here. Upper and
lower case characters can be intermixed within atem names witheut
i1l effect. The judicious chaice of case may make LISP code mere

readable. See $v/sip.l fer example.

EOF The end of file character, alse knoewn as EOF or contrel-d, is used
to exit from LISP in response te "Eval:", EOF in respense teo
"Help:" will nermally get you back te "Eval:" mode. Thus, twe EOF's
will always suffice te get eut of LISP. "(return)" in respense teo
"Eval:" will also cause LISP teo exit.

Cemments The comment character is a questien mark. All text on a line teo the

Q)

Real

Loading

right of the comment character is ignored.

The LISP interpreter will net evaluate an expression until the
parentheses balance. 3Se ene can type an expression on mere than one
line; evaluatioen will net preceed until the leftmest parenthesis has
been matched. Square eor angle brackets can be used in place eof
parentheses. As a benus, a special cenventien allows one te do some
autematic parenthesis balancing.. The rule is: any clesing bracket;
), 1, or >; will generate the cerrect clesing brackets to clese all
epening brackets; (, [, or <; te the left back through the opening
bracket correspending te the clesing bracket that was written., For
example, writing a] will force cloesure of all i1ists starting with (

or < back to the left until an unclesed [is feund te clese.

In erder to distinguish real numbers from dotted pairs LISP requires
that real numbers be prefixed by a percent sign. Real numbers are
preceeded by a percent sign eon eutput, and must be preceded by one
when input. Examples ef real numbers are: %1.0, %-.57, %357.110e-
12. This is a kludge that hopefully will be fixed in updated
versions of the interpreter.

When loading LISP seurce code files, the interpreter does net
generate any errer messages. Therefore it is pessible that a file
you theught was loaded has been ignered. 1In the case of productien
rule files this can be checked by typing "rulelist" te see if the

rules were defined. To lead a file while LISP is running, the user
can type:

(load "file-name")

5-10

Shell There is a special Unix LISP cemmand, "(sh)", that enables ene te
temporarily suspend executien ef the LISP interpreter and begin
execution ef a shell., Any shell cemmand can then be issued. An EOF
(control-d) frem the shell will return the user to LISP.

5.4.5 Sig Commands

A list of sip commands is available frem the shell by typing "menu symb"™.
A mere detailed description can be had by typing "man sip afes". For even
more detail abeut individual commands there is an on-line afes manual for
each, There are two sip commands that de net have on-line decumentation, the
help and man cemmands. The sip help command, as eppesed te the afes help
command, can be run in sip by typing "(help)". It prints a list ef all
available sip commands and their syntax. The sip man command, as opposed te
the afes man command, can be run is sip by typing "(man manual-name)". This
will cause the executien of the afes command "man manual-name afes"™ frem sip
by forking a shell. This is especially useful fer reading en-line manuals for
sip commands while sip is running. For these reasens this decument will net
describe the commands further, with the exception of productien rules.
Suffice it to say that sip commands conform in every way te LISP syntax.

5.5 PRODUCTION RULES

Preductien rules are a means of expressing demain dependent knewledge in
declarative form. Any preductien rule system censists of three compenents; a
set of rules, a data base, and a rule interpreter. In the sip system the
ruleset can be stered in a file or typed inte sip directly. The database
consists of the symbelic image as stered in memory and the rule interpreter is
Just the LISP interpreter.

Rules have four parts. The first is the word "rule". This tells the
preductien rule system te define a rule. Next is a name te assign to the

rule. The name is arbitrary and can have any desired length., Then comes a

set of coenditiens which, if true, will cause the specified actiens te be
performed. A typical rule might be:

(RULE FINDPARKS
(IF (CLASS_IS (trees tree grass veg))
(AREA IS (BETWEEN 200 5000))
(SURROUNDED_BY (resid urban) (GREATERP %.90))

)
(THEN O

(MAKE park)
)

Here, key words are capitalized for clarity, since LISP igneres case. Typing
this cede in or leading it frem a file will only define a rule, net cause its
execution. To execute a single rule the user should type in the rulename
surreunded by parentheses. As the ruie executes, each regien will be examined
to see if the condition part ef the rule is true. If it is then the specified
actien is taken before the next regien is examined. If the cendition is false
then ne actien 1s taken before the next regien is examined. It is pessible te
execute all rules at once by typing:

(mapc rulelist eval)
Basic decumentatien on the clauses used fer preductien rules is available

via "man rule afes". This manual sheuld be read before centinuing with this

sectien. Examples of preduction rules are available via "1lkf rule_exam". The

follewing subsection describes the internal werkings ef preductien rules,

5.5.1 Rule Declaratien

When a production rule is defined, the rule macre is executed te set up
the rule. The rule name iy first added to rulelist, the list ef defined
rules. Then the following code is created and executed:

(CSETQ rulename
(LAMBDA ()
(MAPC regs
(LAMBDA (regien)
(SETQ region (CAR regien))
(COND (cenditienpart actienpart))

Thus when rulename, a functien ef ne arguments, is executed, each regien
will be checked te see 1f the conditien is true. If se, then evaluate
actionpart. Each regien is checked in this manner,

Note that the 1lecal variable M"regien"™ helds the regioen name. The
productien rule clauses area_is, class is, perim is, surreunded_by, and make
all use "region" implicitly. A knewledgeable preductien rule user (defined as
anybedy whe has read this far) can add his ewn clauses using "regien", For

example, a rule te print the names and classes ef all regions whose class is
urban or industrial ceould be written:

(rule urb_ind

(if (class is (urban industrial)))
(then ()

(print region)
(print (class regien))

5-13

— - = o

Te change the class type ef all shadows frem shadew to unknewn we might

use.

(rule shad_unk
(if (class_is (shadow)))
(then ()
(put region 'class 'unknewn)

Finally, here is a rule to recognize rivers (which I will arbitrarily say

have an area/perimeter ratie less than 5).

(rule findriver
(if (class_is (water))
(lessp (quetient (area regien) (euterperim regien)) 5)
)
(then ()
(make river)

Productien rules sheuld be kept in a file and loaded when sip is inveked.
In this way the rules can be easily edited with yeur faverite editor. Of
course, you may type them inte LISP directly if yeu prefer,

5.6 SAMPLE DIALOG

% sip rules #8% user types "sip rules®
ULISP V1,7 Cepyright 1978,R.L.Kirby
Eval: SYMBOLIC IMAGE PROCESSOR UP AND RUNNING

Value: t

Eval: (enter) ##% yser types "(enter)"
LINES READ: 93

REGIONS READ: 47

514

T

B STa————

CLASSES READ: 4

Value: ¢t

Eval: regs #8% yser types "regs"

Value: ((r0 ((11))) (r1 ((11) (166 150 137 129 121 18 14 13 123 122 125 17
16 115 136 134 133 127 126 132 143 140 139 142 168
169 170 164 159 160 161 163 165 172) (178) (Ly1) (187) (188) (189) (190)
(191) (192) (293))) (r3 ((166 151 137 130 121 19 14
12 123 124 136 135 133 128 126 131 143 144 141 142 167 169 171 164 158 154
155 156 161 162 165 173) (147 146 149 152) (174) (175)
(176) (177) (179) (180) (182) (183) (184) (185) (186))) (ri4 ((12 13))) (r2
((115 15 17 119 113 110 112 116 118 120 122 124)))
(r8 ((15 16))) (r7 ((18 19))) (r10 ((120 117 116 111 110 114 119 125))) (r9
(111 112))) (r11 ((113 114))) (r12 (117 118)))
(r14 ((127 128))) (r16 ((129 130))) (r17 ((131 132))) (r19 ((134 135))) (r21
((1u0 138 144))) (r23 ({139 138 141))) (r27 (145
147))) (r29 ((148 146 145 152))) (r30 ((148 149))) (r28 ((150 151))) (r32
((153 155))) (r33 ((157 154 153 156 160))) (r35 ((158
157 159))) (r36 ((162 163))) (r43 ((167 168))) (r39 ((170 171))) (r37 (172
173))) (r5 ((17H))) (r6 ((175))) (ri3 ((176))) (r15
(QA77))) (r18 ((178))) (r20 ((179))) {(r22 ((180))) (r2h4 ((181))) (r25 ((182)))
(r26 ((183))) (r31 ((184))) (r34 ((185))) (r38
((186))) (r40 ((187))) (rd41 ((188))) (r42 ((189))) (rul4 ((190))) (r45 ((191)))
(r46 ((192))) (r47 (1931

Eval: (area 'ri) #%#% yser types "(area 'ri)n
Value: 7615
Eval: (neighbors 'ri) #%% yser types "(neighbers 'rid)n
Value: (r3 ri1)
Eval: rulelist B8 yser types "rulelist®
Value: ((findtanks) (findbridges) (findbeats) (findislands) (findparks))
Eval: (findislands) ##% yser types "(findislands)"
island:1 %% sip finds an island
Eval: feats #8% yser types "feats"
((island:1 ((178)))) #%8 cogmpare this with r18 abeve
5-15
i, T C T N

Eval: (area 'island:1) #%# yser types "(area 'island:1)"
Value: 8718
Eval: (printpreps 'island:1) #%% yser types "(printpreps 'island:1)®
island:1

((includes r18) (class . island))
Value: nil
Eval: (printprops 'r18) #%% yser types "(printprops ‘rig)"
ri8

((part_eof island:1) (level . 2) (intensity . 40) (center 216 . 131)

(area . 8718) (class . veg)) #%% notice part of and area values
Value: nil
Eval: (EOF) #8% yser types contrel-D
)

5.7 LIMITATIONS

5.7.1 Representation Limitatiens

There are some shertcomings te the current representatien scheme.
Possibly the most serious is that regiens are segmented based upon class type.
In order to recognize a feature, its compenent regions must be segmented. For
example, toe find reads in a city requires that the read be of a different
class frem its surroundings. PBut if reads, houses and factories are all
classified as "urban"™, it will net be pessible te recognize the read alone,

The solution te this problem seems to lie in the development of classification

metheds that can distinguish reads from other urban areas.

There are some attributes of regions that one would like to have around i
but are difficult te measure or represent. Shape is ene such attribute., It I
would be nice to be able te declare in a preduction rule that storage tanks

are round, trucks are rectangular, etc, We do net now have this capability.
Although there s«veral sip functiens that deal with adjacency, none deal with

the proximity ef one region te anether in a more general sense. Fuzzy

concepts like this are difficult te express in any pregramming language.

5.7.2 Rule Limitatiens

As currently implemented, preductien rules can enly take one regien at a
time and make a feature eof it, In order to cambine more than one region inte
a feature it is necessary te manually use the "cembine" sip command. This
should be remediable with some more work. It might alse be desirable te let
production rules operate on edges and features as well as regions, Perhaps
each rule shorld specify whether it is te leek at regs, lsegs, feats er some
combinatien thereof., One last drawback of rules is that if the same rule is
run more than once on the same image, it will recegnize the same features each
time, giving several names to the same actual feature. The "make" functien
should be fixed te prevent this,

5.7.3 Number of Regions

Running as it dees on a PDP-11, sip has sterage limitatiens, There is an
upper 1limit of roughly 200 regions that can be fit inte memery at ence
depending upon the beundary cenfiguratien, This is actually net as many
regions as it may seem, so some editing will be required en mest images before
sip_preproc is run. im edit can be used to manually reduce the regien ceunt,
and rm_neise can be used te autematically reduce the regien ceunt. If there
are toe many regions, LISP will print a nasty message when "(enter)" is typed.

To process more regions we could use a larger machine, such as a VAX,

5.7.4 Speed

The preprocesser, which takes roughly 10 minutes eof PDP-11/34 time, is
one bottleneck, but its performance is net readily impreved upen. sip itself

uses compiled code, and so runs fairly quickly. Typical times are 15 secends

to get sip running, 20 seconds teo "enter", and 5 seconds te "restere",

6. AFES IMAGE PROCESSING LANGUAGE

6.1 INTRODUCTION

The purpese of the AFES Image Processing Language (IPL) is te previde the
experimentor with a language which he or she can use to specify the AFES teels
and parameters for an image precessing experiment, and to set up a sequence ef
experiments to be run automatically in a "batch" mede. Such a sequence eof
experiments could involve applicatien of a series ef different processes te a
single image, repeated alteratien of the functional parameters of a single
process, applicatien of a single process/parameter set to a sequence ef
different images, or any combinatien thereef. For example, one might wish te
apply a number of different edge enhancement operaters (e.g. Sebel, Robert's
Cross, Laplacian, etc.) to an image then assess the results ef each ene. Or a
pixel classificatien procedure might be applied repeatedly te an image, with
each iteratien using a different combinatien ef measurement extractors eor
different values of measurement extractor parameters, e.g. window sizes,

threshelds, weighting facters, etc.

The Image Processing Language consists ef a table structure which
specifies how an experiment is to be cenducted, a set ef special cammands fer
modifying the table, and a contrel structure which supervises the definitien
and applicatien of the experimental precedure. Each user has one or mere

private versiens of each ef these structures,

6.2 TABLE STRUCTURES

The first structure specifies what image is to be processed. The AFES
identifies an image according to photo, view, and frame. The phete is the
basic unit of source material, such as a single film clip. This is divided
inte views, with ane view being the size of a typical AFES image, e.g. 1024 x
1024 pixels. The view is further divided inte frames where a frame may be the

e A

5. s, - tadios IR

e

e -
e

e e e L

pixels might be:

measurements:

avg 3
lapl

clasgsifier:

mahal ([optienal arguments]
(training set)

class:
trees
regions:
treesi
trees2
class:
water
regions:
lake1
riveri
river2
class:
urban
regiens:
industryi
residentialt
comments:

<user comments>

The measurements are the AFES pixel measurements

left or right conjugate of a stereo pair or simply a single (menoscopic)
image.

The second basic table structure for the IPL is the AFES "methed file",
It constitutes ef a "recipe”" for an image processing experiment. A typical
method file for statistical pattern recegnition as applied to individual

to be extracted from

each image pixel. A list of avallable measurements is contained in the meas
menu,

- b

The particular classifier to be used is the next entry. A variety of %
supervised and unsupervised classifiers are listed in the class menu. In the '
aboeve example, the Mahalanebian classifier is used, which requires supervised
training. Hence, a specificatien of the training regions teo be used for each

desired output class is given. Each user has a cellection ef training regiens

which are defined interactively via the get_region ceommand.

Initial versions ef AFES support methed files for pixel classification;
future extensions are anticipated which will incerporate similar types eof
specifications for edge-based region extractien (as opposed te pixel-based

extraction), region classificatien, and symbelic precessing.

PP 40 AN, et A

6.3 IPL COMMANDS

-

e a2,

The image precessing language uses a set of speclal commands which

-

perferm non-interactive medificatien ef the table described in the preceding
section and apply precedures defined in the methed file to the image defined

by the current phote, view, and frame. :

6.3.1 Change Processing Image (cpi) y

The purpose ef ¢pi is te change the image being processed from within the H
image processing pregram. Typical uses would invelve applying the same

processing methed te a number ef different images.

The syntax is:

cpl <phote> <view> <frame>

6.3.2 Change Processing Methed (cpm)

The cpm command allows the IPL pregram te change from one processing

method to anether, A user would typically have defined a ceollection of

metheds, each given a unique name or "methad-id". The syntax fer changing the 1

P —————

methed frem within an IPL pregram is:

cpm <methed-id>

6.3.3 Medify Methed (med_methed)

changed.

mod_methed(mdm)

The mod-method command is the most powerful special function which the
IPL uses. It allews the user to alter the precessing method from within a

pregram. A number of flags are used to specify how the methed is to be

The command syntax is:

(<-ma "add_measure" ("del_measure"]> ||

<-md "measure"> || <-c classifier> }|

<-ra class region> || <-rd class {regionl> ||
<-0 "comments"> || <-sv method id> <=1s8>] {1}

where, as usual, <arg)> denotes a mandatory argument and [arg] an optional

argument.

The follewing is a description of the flags and how they work:

- ma -the first argument string in quotes is a measurement string te be

added. The second argument string in quotes is optienal and represents

an old measure to be deleted from the methed file. When the second

argument is present the function is a replace measurement.

- md -delete the measurement string in quotes

¢ -changes the classifier name and/or any eptienal arguments

- ra -adds the region to the class and adds the class if needed

H
i
3

o

- rd -deletes regien frem class and entire class if the eptienal region

name is net given

6 -adds comment line in quetes to comments section

- sy -saves the current method including classified eutput under a new

methed name
- 1ls -lists the contents of the methed file to standard eutput
The "-sv" switch would be especially useful if a methed works very well and
the user would like te save it but continue experimenting with the current

method.

6.3.4 Current Methods and Images

A user performing image precessing experiments may run the required
pregrams in the foreground. That is, when a pregram is started, input frem
the terminal is suspended until the pregram finishes and returns centrel te
the terminal. IPL pregrams executing in fereground operate en and use the
AFES current "werking image"™ and "werking methed".

UNIX also prevides the capability te initiate "background" preocesses,
i.e., input from the terminal centinues while the backgreund process executes.
IPL programs can run in the backgreund and in fact it is eften cenvenient fer
them to do se, so the user can centinue with pregram develepment, foreground
experiments, etc., while a lengthy IPL program executes in the backgreund, In
this situatien, AFES provides a separate current image and methed for each
background precess. These are referred te as the "precessing image" and
"precessing method" te distinguish them frem the "working"™ image and methed
asseclated with fereground precesses. The "precessing" image and methed are

automatically inveked by cpm and cpi cemmands which are executed by an IPL

6-5

S s

program in background. The impertant things te remember are that (1) an IPL

pregram running in the foregreund always operates on and uses the current
"working" image and methed, and that (2) a backgreund IPL pregram will alse
operate on and use the current werking image and methed unless it centains

explicit cpm and cpi cemmands te change te a current "processing" image.

6.4 CONTROL STRUCTURE

The preceding sectiens describe the tables which define how an image is
te be proecessed and the commands which allew medificatien ef the table by a
backgreund precess, i.e., an IPL program. The last cempenent is the centrel
structure which ties these commands tegether inte a stand-alene program, This
structure is the shell, the UNIX command language. This paper will net
attempt to previde a full descriptien of the shell; rather, its use te
generate IPL programs will be described. Readers unfamiliar with the shell
should read the PWB/UNIX Shell Tuterial by J.R. Mashey, published by Bell

Telephone Laborateries and included in the UNIX system decumentatien.

An IPL pregram consists of a sequence of shell cemmands and IPL special
commands which reside in a file identified by seme pregram name. After
creating a pregram file, it must be marked as executable using the "chmed"
command. Up te nine arguments can be passed te a shell pregram; these are
referenced in the pregram itself as a character sequence of the form $n where
n is 0 te 9, $0 is the name of the pregram, while $1 to $9 refer to the
arguments which fellow the pregram name when it is executed., The felleowing
examples are taken from the topical decument entitled "AFES System Structure,"

6-6

'‘this file runs the method "test 1" on
‘the phete: syracuse

'‘for these views: viewl, view2, view3
tand this frame: mene

set a = 1

cpm test)

while $a ! = U

cpi syracuse view"$a" mene

cfy

set a + 1

end

: 'this file runs the methods "testl1-test3" on
: 'the phote syracuse center mone

set a + 1

cpl syracuse center mono
while $a != 4

cfy

set a + 1

end

'For the pheote -syracuse center meno

'this file starts with method - testi

'trains the classifier for the method

'makes a cepy of testl named test2

'makes test2 the current precessing methed
'deletes class "trees" frem test2

'adds class "green" with regien "field"

'The confusion matrices may be examined later

cpi syracuse center mone
cpm testl

train

mdm -sv test2

cpm test2

mdm -rd trees

mdm -ra green fields

mdm -ma "centr 6 / avg 20"
train

Any parameter of the methed files may be medified by the "mdm" command and any
parameter of the "cpi" or "cpm" commands may be modified. The user may

examine the output visually as with "map" for a classifier ocutput er tabularly

as with the confusion matrix for the train cemmand.

o e e —

7. PHOTOGRAMMETRIC SOFTWARE

7.1 INTRODUCTION

This sectien describes the photegrammetric seftware available on the
Automatic Feature Extractien System. It is intended te previde insight inte
the design of the seftware as well as give guidance te the mathematical
conversiens followed during implementatian,

The AFES is designed for experimentatien with digital imagery. However,
the Scanner/Viewer Subsystem provides for hardcopy as one of the primary
inputs to the testbed. As a result the tepic eof all digital photegrammetric
techniques is addressed in light ef hardcepy seurces. Seome aspects of a truly
all digital system are mentiened but are net the main tepic ef this repert.
Certainly many ef these techniques discussed are applicable to the all digital

environment.

Section 7.2 begins with a brief summary ef the goeals ef the AFES design.
Subsections within 7.2 discuss specific requirements which are met by
photogrammetric precesses, including maintaining steree and performing
mensuratien and point pesitiening, Sectien 7.3 which fellews, prevides a
detailed descriptioen ef the AFES mensuratien package.

7.2 THE AFES SYSTEM DESCRIPTION

The Autematic Feature Extractien System (AFES) 1is an integrated
hardware/seftware complex. It is designed as a test bed for applying image
processing, phetegrammetry, pattern recognitien, and artificial intelligence
derived techniques te Defense Mapping Agency (DMA) requirements for semi-
automatic map generatien and updating, The AFES has been designed as a
cemplete man-machine system fer image understanding, and an efficient receiver
of algerithms. AFES possesses facilities for easily reimplementing,

integrating and testing algorithms developed elsewhere, as well as new
algerithms. The system contains elaberate facilities for image (input) and
sterage, and can be eperated by persens unfamiliar with computers,

Film and map inputs te the system are precessed by the viewer/scanner and
pletter/scanner, respectively. The viewer/scanner is capable of scanning a f
1024 x 1024 pixel image with 256 grey levels in approximately 17 seconds. The
image size on the film plane is variable frem 5 mm square to 30 mm square with
arbitrary retatien and skew up to 20 degrees. The viewer/scanner 1is
phetometrically calibrated and geometrically accurate., The map
plotter/scanner accommodates boeth opaque and transparent input with scale and
retation fixed. The output frem the pletter/scanner is a high quality

manuscript,

7.2.1 System Requirements

There are a variety of interactive, interpretive functions that require i
photogrammetric precessing, The essential problem is teo take measurements on ‘
the displayed imagery and produce caerdinate eutputs in a ground reference ,1
system. In additien, the analyst interprets the photos in steree for mest
tasks in his normal working envirenment. The automatic maintenance of the
stereo model is an essential functien of the AFES test bed.

The AFES experimental functiens require three basic categories of ‘

phetogrammetric precessing the maintenance of a stereo model on imagery being

scanned, object mensuration, and point positioning. The system was neot

required to perferm as a stereo ceompiler with real time reotification,
Instead the user selects subimages to werk on in stereo, Design requirements
did net call for constant real time mapping of object space to image space.
It was envisiened that discrete peints would be measured as opposed teo l}
functiens requiring constant point colleetien such as prefiling. Therefore,
care was taken te allow the greatest flexibility in selecting scenes to be

scanned, and positioning the cursor for peint selection., The system operates

as an I1mage space plotter with a rectified duplex of steree cursers en the
screen for the cperator te measure., The rest of the section will discuss each
of the three basic processes that AFES is designed to perform.

7.2.2 Maintaining Stereo

The task eof maintaining the steree model is accemplished by keeping the
epipelar 1lines parallel te the viewer's eye base. This coenditien is
maintained through different mathematical cemputatiens fer different sensers,
The scale of each image must alse be adjusted so that each is displayed at the
same scale., Finally, a curser must be displayable in stereo for manual
delineatien of features in the imagery. Since the primary image input is
stereo hardcopy images from the scanner, the main bedy eof cede for stereo
maintenance is designed fer contrel of the scanner, There are reutines,
however, for rectifying twe cenjugate images fer steree viewing if their

source is ether than the scanner.

The maintenance of steree requires knewledge of the orientatien
information which 1s output from a triangulatien eor bleck adjustment
procedure. AFES relies upen the output‘cf other phetegrammetric systems teo
previde the apprepriate attitude and pesitien data for images being precessed.
There are ne erientatien adjustment reutines previded on the AFES feor this

purpese,
7.2.3 Mensuration

Seme of the ground space measurements that are ebtained frem the image
data are relative measures. That is, the height ef a tower er length of an
object are often required. This mensuratien precess can be performed by lecal
image measures of shadow or lecal differential parallax. In the AFES hewever,
there is eneugh infermation available that rigereus models can be used even
for mensuration. The mensuratien programs eperate in a lecal vertical space

as does the point pesitiening seoftware.

oo - " [P MPIAN T8 TR T il Il

I

TR 2. A M

The routines available for mensuration are interactive, They allow the
eperator to measure height changes and planimetric distances. Incerperated
inte the software that manipulates the regien data generated by the
Statistical Pattern Recognition Medules are measures that relate areas ef
contiguous regiens to areas on the ground. These reutines are based en lecal
scale derived by height informatien and the senser medels.

7.2.4 Peint Positiening

There are two metheds ef peint pesitiening which weuld be applicable te
the AFES. The first is peint pesitiening with rigoreus senser medel. This
ceuld be performed stereescepically eor monescepically with elevatien data
included. Alternatively, a warping precedure can be used to fit a single
image to a greund ceordinate system. Unfeortunately, this warping precedure
dees net incerporate any relief distertien., However, in areas ef relatively
flat terrain a warping precedure would be adequate and the algerithms are very
fast.

The AFES uses beth rigereus medels and warping fer poeint pesitiening.
The rigereous models are incerperated in a series of interactive reutines which
allew the operater to select in stereo or menescepically the peints which he
wishes te measure. The system supports several senser models and prevides
eutputs in a variety of greund ceeordinate reference systems. The warping
software accepts contrel peint data frem the eoperater while the eperater
measures the peints on the sub-images displayed. The correspending peint
values are then used teo generate the geemetric transformatien frem image teo
ground. These geometric transfermations, based en two dimensienal pelynemial
transforms, are then utilized by the resampling reutines te generate an image
registered te the greund reference grid ef the central peints. The transferms
for registration include first threugh fifth erder pelynemials,

7-4

e v e = g

%
;
|

7.3 MERSURATION PACKAGE
The AFES "mensurate" cemmand allews the user te perform mensuratien tasks
interactively. Measurements for these cemmands are perfermed on the specified
display channells], which are specified as an argument to 'mensurate’.
® -3 ! use the left and right monechreme display channels
® -c ! use the red and green celer display channels (anaglyph)
e -R : use the red channel eonly
e -G : use the green channel only
e ~B : use the blue channel only
e -1 : use the left channel enly
e -r : use the right channel only -p : if present as a secend argument
specifies current header infermation data is present in mensuration form
that matches what is currently oen the display
Upon invecatien, af*~r a shert delay for preprocessing the header information,
the prompt 'enter command > ' will appear on the terminal. If the return key
is typed in response to this prompt a menu will be printed out on the
terminal. The prompt, for entering a command after the initial prempt, will be
a '> '. A menu eof available commands can also be found during execution by

typing 'commands’.

Available mensuration commands include:

v e e,

spts ¢ Steree peint pesitiens '

{
relpts ¢ Finds relative point positiens '
height ¢ height ef ebjects

distance : xy distance between peints ;

phopts : Find phete peint positiens (stereeo) g

mpts : single phote lecal xy peints 3
!

mphepts ¢ single image pheto peints N
’ E

quit : End executien ef pregram (er step) g

save ¢ save output in a file

commands : List available commands

sh : Escape temporarily te anether shell f

geographic : eutput in geegraphic ceerdinates

geocentric : output in geecentric ceerdinates g

lambert : output in lambert coerdinates

lecal : output in local xyz

mercator : output in mercater coeordinates i]

pelar : output in pelar coerdinates

utm : eutput in utm ceerdinates

More explicit usage for each command is given below.

If 'mpts' is the command selected then a curser will appear on the choesen
display. An optienal argument te this command is 'left' or 'right'. This can
be abbreviated by using an 'l' or 'r', The optional argument is enly needed if
operating in steree mede and the right display is to be selected. (The left
display is the default display in stereo mode). If operating in anaglyph
sterec consider the red 1image channel to be the left display and the green
display as the right display. The left trackball buftten selects a point. The
right trackball butten teggles the curser frem cresshalir to det. The center
butteon has ne effect, After a peint has been chosen the user enters the
elevatien of the peint on the terminal. The lecal xyz groeund coordinates are
then printed on the terminal.

The command 'mphopts' allews the user te select phote points for a single
image channel. An eptienal argument te this command is 'left' or 'right'.
This can be abbreviated by using a '1' er 'r'. The eoptienal argument is enly
needed if operating in stereo mode and the right display is to be selected. A
cursor will be displayed on the center of the selected er default display.
There are twe modes of operation for the trackball while in 'mphepts'.

I. If the center butten (red button) is up, curser movement will be
controlled by the trackball. The left trackball butten when depressed
will select an image peint fer transformatien te the photo system. The
resultant pheto point will be written te standard eutput (the terminal
is the default standard output). The right button on the trackball
when pressed toggles the cursor frem a cresshair to a det, or a dot te

a crosshair,

II, If the center button is down, the trackball will be in a zeem and
scroll mede. In this mode, mevement of the trackball will screll
(hardware screll) in x and y with the trackball metien, The left
button when pressed increases the zeem facter, The right butten
decreases the zoom factor. A 1X zeom factor is the initial state,
Possible zoom facters are 1X, 2X, UX and 8X.

The command 'mphopts' terminates when the same peint on the image is selected

twice in succession.

The commands ‘'relpts', 'height', 'distance', 'phepts', 'spts' all use the
same trackball operatien. A description ef the functiens ef the trackball and
its buttons will be given here, If -s was specified as an argument to
mensurate(msr) the left and right monochrome displays are used. There is a
trackball for each display. The left trackball has the follewing functiens

when a command is bej:.g executed.

The left butten selects a point on the left and right displays beneath the

cursers positiens.

The right butten on the left trackball changes the cursers type. If the
cursers were cresshairs and the button is hit they are changed te dets,

If the cursors were dots they are changed te cresshair,

The center button en the left trackball contrels what happens when the left
trackball is moved. If the butten is in the up poesitien, trackball
movement will contrel movement of beth cursers. If the butten is down
the cursers will remain fixed and the left and right image will be

screlled.

The right trackball has the follewing functions:

The left button on the right trackball allews for an increase in the zoem eof
the displays when hit. The maximum zoem is 8X. The zeem i3 centered
around the pesitien ef the curser on the left display.

The right butten en the right trackball allews for a decrease in the zoom ef
the displays when hit. The minimum zeem is 1X. The unzeem is centered
around the poesitien of the curser en the left display.

The center butten on the right trackball determines what happens when the
right trackball is meved. If the butten is up then mevement ef the
trackball will move the curser en the right display in the x direction
only. If the butten is down then movement ef the right trackball will
move the curser en the right display in the y directien enly.

If the -c is used then the red and green image planes are used in the steree
mode. A single curser appears on the display and a peint is selected when the
cursor, the desired peint en the red image and the cerrespending peint green
images appear at the same pesitien. The trackball has the fellewing functions
to enable image peint seiectien,

The left butten always selects a peint when pressed.

The right butten changes the curser frem a cresshair te a det er a det to a

cresshair. (There is ene exception explained belew)
The center butten changes the mede of operatien for trackball mevement. There
are 3 modes ef operatien for the trackball, Annotatien memory fer the

display (characters written en the display) shew the current mede.

move curser - allows movement ef the cursoer with the trackball

7-9

scroll red in x - allows the red image to be screlled in x enly. The
general preocedure is to use this mede to cerrect x parallax. The
curser can be 'fleoated' in this mede and pesitiened on a peint.

screll green - allow the green image to be scrolled in beth x and y.
Alse in this mede the right hand trackball butten centrels a zeem
mode. Pressing the right hand butten will zeem frem 1X te 2X to 44X
to 8X and back to 1X while in this mede.

The cemmand 'height' is used te find difference in elevation ef twe
peints, Twe peint pairs are selected on the images with the cursers. The
height is output en the terminal. If the value returned is pesitive the first
point had a higher elevation. To terminate the height command select the same

point consecutively.

The command 'distance' is used to find the xy distance between twe
peints., 7Twe poeint pairs are selected on the images with the cursors. The
distance between the two peints are ocutput on the terminal. To terminate this

command select the same peint ceonsecutively.

The command 'relpts' is used te give relative point positiens. The output
system is a local vertical system. Twe point pairs are selected on the images.
The local xyz ground ceoerdinates and the residual parallax are returned after
every point chosen, After the second point is chesen for each set the
difference in x,y and z are printed and the distance between the poeints in

xyz. To terminate this command select the same point censecutively.

The command 'spts' is used to cempute point pesitiens in ene of several
available coerdinate systems. The default system is lecal vr “ical. The
output system can be changed to a different prejectioen by typia .2 name of
the map projection desired while in a command mede for 'mensurate' (a command

mode is when a '>' appears as a prompt). Available eutput systems are:

geographic, geecentric, lambert, mercator, pelar, utm. Parameters fer map

i
¥
¥
k

prejectiens (such as standard parallels eor central meridean) should be entered
by using the cemmand 'gee' on the workstatien befere 'mensurate' is executed.

Besides having eutput printed en the terminal it can be saved in a file
as well. To de this just type 'save' while in a command mede (when '>' is the
prompt) for 'mensurate!', A message will ceme back asking the name of a file
where you want the sutput to ge. If the file already existed the eutput will
be appended to the end of the file. If the file did net exist it will create
and write to that file. If a carriage return is hit for the respense the
commands will ne lenger write te this file. All cemmands that preduce terminal
output will write te the 'save' file if one exist. The command 'save' must be
typed any time 'mensurate' is run if there is te be saved output. The command
'stop' or 'q' will step end executien of 'mensurate'. The command *sh' will

fork a new shell.

7-11

8. SCANNER SUBSYSTEM

8.1 INTRODUCTION

The AFES Scanner System prevides the means by which stereo photographs
and graphic input materials are scanned and digitized fer use in the AFES
system. The scanner system is a separate computer contrelled system which
incorporates 1linear array charge coupled device (CCD) image sensors in
conjunction with cemputer contrelled translatien stages to perform the
scanning functiens required by the AFES System. Scanner operation {s
essentially independent of the rest of the AFES System, and it performs
scanning and digitizing operatiens simultaneously with other AFES system

operations.

The scanner system ceonsists ef a stereo phetegraph scanner/viewer unit,
a graphics scanner/XY pletter, a contrel cemputer, special real-time digital
video processing hardware, and a centrel interface. The phetegraph scanner/
viewer has twe photograph stages equipped for beth scanning and viewing. The
use of two stages permits selected areas of either photegraph of an eriented
stereo pair te be scanned and digitized on demand. Input map base material
and other graphics are scanned with the graphics scanner which also serves as
an XY plotter for output graphics plotting., The contrel computer is the
central control element of the system. It contrels the scanner serves and
video precesser te implement scanning and digitizing functions. It alse
controls the flow of data between the scanner and the rest of the AFES System,
and provides the means for operater communication with the scanner system.
The foellowing subsectiens previde a mere detailed description of each

component ef the scanner.

8.2 AFES SCANNER SYSTEM

A diagram of the AFES scanner system 1is shewn in Figure 8-1., Majer
subsystems include the twoe photegraph scanners, the graphic scanner, video
precessing and senser centrel hardware, the contrel interface and a Digital
Equipment Corperatien PDP 11/34 system coentrel cemputer. Fer operator
interaction during setup, a contrel panel and CRT terminal are also included.
The main interface between the digitizing system and the AFES system cemputer
(PDP 11/70) is threugh ene port of a dual access mass stoerage disk unit. The
primary functien ef this interface is to permit transfer of image data frem
the scanner system to mass storage witheut interfering with other AFES system
operations. A PAR-developed contiguous file allecatien algerithm has been
implemented for this dual-ported disk, which permits fast access to image
files by the scanner, which must write to centiguous disk blecks. At the same
time, these images can be accessed as ordinary UNIX files en the PDP-11/70
side,

The twe photegraph scanners consist ef servo-driven XY phote stages,
servo-driven zoem and retatien optics and selid state linear array phetesensor
subsystems. Phoetograph scanning is accemplished by meving the stage at a
constant velecity in ene direction and sampling lines ef imagery along anether
direction with the array senser. Since the array is read out sequentially,
this procedure results in a raster-type scanning ef the phetegraph, similar te
that preduced by a TV camera but at a slower rate. The eutput ef the scanner
is a video signal which is transmitted te the videe processing hardware. The
computer-centrelled zoom allews for scanning the phetegraphs at a wide range
of rerolutien., Minimum pixel size is about 5 micrens and maximum pixel size
is about 30 micrens. The minimum pixel size was defined based on infermal
studies eof various spet sizes conducted by PAR and gevernment persennel. The
range of 5-30 micrens stems frem the capability ef the eptical zeom system.
Actual maximum resolution as measured during acceptance testing 1is
appreximately 80 1lp/mm. The scanner can preduce image data in a raster format
which 1s approximately 1000 pixels wide and of arbitrary length. Nermally,

8-2

e g e

dorwn: 2w iiamsy -Migiar: e b R o, SNMIRY

wmeafeyq weiss 1auuedg SIIV - 1-8 aan3ty

ifrer—

SNYINN
oL/tL 9
JUL] L043u0)

gl ———

XAS1Q SS5320Y
teng 03 juil
ejeq 0L/1LL

493nduo)
1 043U0)
ve/1l dad

e
405S3204d 09p1A 4333014
mammm— 03P A AX/49uuedg
sJ3jsuea) te1sbig sajydeay
ejeq WWa
03PLA
SU0}11504
0AUd
] 220343 s JIMI| A/ SBUVRIS
SNAINN {043U0) Isjeub)g fdueq |043u0) 03044 03431
pue u0}3}S04 OAUdS
jeattiiifoe

i

the raster is 1024 by 1024 pixels. The complete centrol of phote stage metien
and optical retation allows fer correction of skew image distertien while

scanning. This feature is particularly wuseful in scanning panoramic
photegraphs.

The graphics scanner is essentially an XY plotter with a linear array
camera mounted en the pletting head. This scanner has fixed optics and scans
the map or feature manuscript at a censtant magnificatien. The graphics
scanner prevides for either frent or back illumination of the image. This
allows both transparent and epaque manuscripts to be scanned. The scanning
technique for the graphics scanner is essentially similar te that ef the
photograph scanner. The camera is meved in ene direction while image lines
are sampled aleng an erthegonal direction. Because of the fixed eoptiecs,
however, the graphics scanner always preduces a rectangular raster format and
a fixed reselutien ef 80 micres.

The video processing and camera centrol hardware operates in cenjunctien
with the three scanners te preduce digitized image data. This hardware
provides synchronizatien and contrel signals to the detecter array camera
electronics for image line sampling and serial transfer ef image data from the
scanner to the videe preocessing hardware. Image infermation coemes frem the
scanner in the form of sampled analeg videe. Since only ene set of videe
proecessing hardware 1is required for the three scanners, videe selection
circuitry is provided for connecting any one of the scanners te the video
processing hardware. Videe precessing includes analog-toe-digital (A/D)
conversion, compensatien for sensor dark level, compensation for sensor gain,

geometric corrections, and transformatien of image intensity data.

The scanner system has its own Digital Equipment Corporatien PDP 11/34
contrel computer which runs under the RSX-11M operating system. This cemputer
controls overall operatien of the scanner system, interacts with the eperater
during setup, and communicates with the AFES main PDP- 11/70 cemputer. For
scanning operatien, the PDP-11/70 programs generate commands te initiate

8-l

e o ——— e e e o -

phetegraph er graphics digitization. Information is passed te the scanner
system computer indicating which scanner te select, phetegraph or graphics
ceerdinates fer the center of the scan, magnificatien te be used, retation eof
the array, and scan metion parameters. The computer then generates the
necessary serveo commands and centrel cemmands te scan and digitize an image,
read scan line data inte the PDP-11/34 memeory, and transmit this data te the
mass storage disk. Once the precess has been initiated, it proeceeds
independently te scan and store a digital image. During scanning the PDP-
11/70 is free te perform other AFES System operations, assuming these
operations de net interfere with the storage of digitized image data on the
dual access disk unit by the image digitizer system cemputer.

The scanner system cemputer handles the real-time transfermatiens frem
phote coordinates to stage coerdinates fer scanning and pesitiening the
photeographs, These transfermatiens are established at setup time by
performing an interier orientatien fer each of the twe phetegraphs., Teo
provide for manual metien eof the photegraphs during interior orientatien, the
system has a contrel panel with an incremental input ceontrel. This is
connected to the cemputer through the centrel interface. Te permit entry and
display ef data, a CRT terminal is previded with the cemputer system. This
facilitates entry of orientatien data and prevides for display of data for
monitering image digitizer system operatien.

8.3 PHOTOGRAPH SCANNER/VIEWER UNIT

The stereo phetegraph scanners are centained in a single unit which rests
on an equipment cabinet the size of an effice desk (see Figure 8-2). The unit
centains twe 9 inch by 18 inch serve-centrelled photegraph XY stages, twe line
array cameras, zeem optics for beth cameras, and stereo viewing optics. The
photograph stages are of stage-en-stage design with round ways and ball
bushings. Optical enceders quantize X and Y metion to a precisien of 2
micres. An accuracy ef 5 micres rms is achieved by applying corrections te

the serve outputs within the computer,

e

Serve-centrolled zoem optics assemblies provide camputer contrel oeof
scanning magnification over a 6:1 range. The zoom optics are based on a
commercial zoom microscepe assembly adapted for servo control. The
magnification range of the scanner eptics is about 0.43X to 2.6X for pixel
sizes in the range of 5 micres to 30 micres. The line array camera can be
rotated threugh + 20 degrees to permit scanning aleng the stereo baseline.
This retation is alse servo-centreolled frem the computer.

In additien te the scanning optics, a stereo viewing optical system is
proevided for performing photograph interier erientation and lecating cenjugate
stereo imagery. The viewing optics consist of the optics frem a Bausch and
Lomb steree zooem transfer scepe modified for use in the AFES Scanner system.
The viewing optics have image retation and zeom magnification capabilities.
Magnification range is from 6X to 40X and maximum field of view is 30
millimeters. Optical reference marks for manually measuring photegraph
pesitiens are luminous marks multiplexed inte the viewing optiecs at a point
immediately below the photograph stages. Photographs are mounted emulsien
down on the stage glass and are viewed and scanned from belew. Illuminatien
of the photeographs is frem the top. The illuminatien lamps are operated from
well regulated DC power supplies, one of which can be contrelled by the
computer. As the scanner magnification is varied, the illumination level is
autematically ad justed by the computer to keep the line array camera operating
at its nominal output level.

To provide the requisite operator contrel functiens for setup and
interior orientatien, a contrel panel 1is mounted en the photegraph
scanner/viewer unit in frent of the operater. This panel contains a rate input
contrel for slewing the various scanner serves, and pushbuttens to centrel
servo power and for selecting the serve axis to be contrelled. A busy lamp on
the panel signals the operater when the computer is engaged in performing a
scan and digitize operation and cannet respend to eperator inputs,

8-7

a Tk pros—E n s i € A e B e L sk e e

- i e

T —

o —

8.4 GRAPHICS SCANNER/XY PLOTTER

The graphics scanner consists ef a linear array camera meunted en the
drafting head of an XY pletter. The linear array is aligned with the X axis
of the pletter and cannet be rotated. Magnificatien ef the scanner is fixed
at about 6X., This allows the 13 mm linear array te cever absut 80 mm en the
map or feature manuscript. The eptical axis ef the camera is effset a
precisely knewn ameunt frem the stylus chuck of the plotter. This allews the
stylus to be used as a reference poeinter te the center of the image to be
scanned. Scanning is accemplished by meving the pletter at a censtant
velocity in the Y directien while sampling and reading eut image lines in the
X direction. The scanner scans and digitizes a cemplete 1024 by 1024 pixel

image in about 8 seconds.

Both transparent and epaque manuscripts can be scanned with the graphics
scanner, Front illuminatien is previded for scanning epaque manuseripts such
as maps. For transparent material, the backlighting of the pletting table is
used. A portable centrel panel allews the operater te manually centrel the
plotter servos at the pletter. This is used for set-up of map base er feature
graphics en the XY pleotter.

8.5 LINE ARRAY CAMERAS

The basic photesensing device of the three scanners is a 1024 element
charge-coupled device (CCD) 1linear array. This device 1s an integrated
circuit containing charge-integrating phote sites and CCD analeg shift
registers. The phote sites cenvert photens te electrenic charge and integrate
the charge during an integration peried. To read out the device, the charge
packets are all simultaneeusly transferred (in parallel) te twe CCD analeg
shift registers. The shift registers are then read out serially and their
eutputs cembined to obtain a single video eutput signal frem the device.

In the AFES Scanner System, the array sensers are incerperated in
prepackaged linear array camera systems. The camera centains the necessary
circuitry for driving the array and sampling its eutput te proeduce a sampled
analog video signal at the output ef the camera. Since the photemetric
fidelity of the array is net by itself adequate for the AFES system, external
video precessing circuitry is previded which cerrects dark current and gain

variatiens acress the array.

The phetoe sites of the array are 8 x 13 micres elements en 13 micres
centers with 5 micres channel step bands between them. The array ef 1024
elements is abeut 13 mm long. The geemetric stability ef the array is
excellent since the phote sites are fixed on the device substrate.

Dynamic range of the array device itself is typically 500:1. The camera
electronics, hewever, add some neise that reduces this range te a minimum ef
200:1, er + 1 part in 400. Dynamic range 1is defined as the ratie ef
saturation veltage to randem eutput neise (peak-te-peak) on a per-cell basis,
Variatiens in dark current and gain frem cell to cell generate neise which is
much greater than the randem neise, but the dark current and gain effects can

be compensated and, therefere, de net limit dynamic range.
8.6 VIDEO PROCESSOR \

Vides signals frem the scanners must be sampled and cenverted te 8-bit
binary data for sterage and manipulation in the AFES system. Furthermore, the
photometric fidelity ef data directly frem the scanner, while perhaps sujitable
fer stereo viewing and map display, is not suitable for autematic feature
extractien. The individual elements in the senser array exhibit different
dark current neise and sensitivity (gain) characteristics. These variatiens,
while repeatable for each element, are tee large te ebtain adequate
photemetric reselution acress the array. Fer images which are te be precessed
by automatic feature extractien, the video data must, therefere, be further

precessed to remeve dark current and gain variatien effects. It 1is alse

desirable te ebtain logarithmic as well as linear image data. The A/D
coenversion, phetemetric ceorrection, and leg/linear transformation are all
performed by the videec precessing subsystem.

A diagram eof the videe precessing subsystem is shewn in Figure 8-3.
Videe signals frem the three linear array cameras enter the video select
circuitry where one of the three signals is selected as the videe source. The
selected videe is then amplified by a video amplifier toe raise the signal
level and reject any common mede neise picked up as a result of transmission
frem the camera to the video processer. The videe is then sampled periedically
and converted te a 10-bit binary data stream. The sampling is performed
synchreneusly with serial readeut ef the array, se successive digital data
words correspend te outputs ef successive senser elements aleng the array. If
the image is to be used only for viewing, the image data may be steored
directly in the output buffer, If the image is te be precessed by autematic
feature extractien, cerrections are made te the individual image data words.

As shewn in Figure 8-3, the output of the A/D converter is applied to
summing circuitry where an 8-bit value is subtracted te correct for dark
current., Each cell of the 1K by 8 randem access memory (RAM) centains a dark
signal correction value for ene element of the senser array. After dark
signal cerrection, the image data is coerrected for variatiens in gain of the
individual elements. This is done by multiplying each data sample by a gain
factor. Each cell of a 1K by 9 RAM contains a gain correctien facter for one

array element.

The output of the multiplier is a stream of 10 bit data words. This data
can be either stored directly as 8-bit words in the output buffer er applied
te a2 log transform random access memory (RAM). If the RAM is bypassed, the
output data is a linear function ef photegraph transmission. If the osutput
data is obtained frem the transform RAM, a logarithmic respense is ebtained.
Since the RAM can implement almest any mapping, other rather arbitrary
functiens can be implemented by loading the transform RAM with data for the

s

wil 01
vivg
1IN0

wy
¥3iing

viva
Nt

NO112373S
03014
wLI9N

waav

¥01133%¥02
w011¥01510

1L MOTY

4

NO1SUIANGD

405532044 OIPIA - ¢-g 2andyy
Wy
-t 9N - o
1daw VA N ¢
IWIS
AVY¥9 -

W
011733v0)
nvd

W
8:8.-81
wiols

Wvo

!

SSIV0OV ANONIM

o/

o

w01133738
0301

le——0314

AN

T o10ms

le o3

1 010a4

8-11

desired transformatien,

The output buffer RAM cellects the image data during readeut and
processing of ene line of image data. Successive precessed image data samples
are stored in successive lecatiens in the buffer. When the line is completed,
the scanner contrel computer initiates a direct memory access (DMA) transfer
of the buffer centents inte the computer memory. To provide better storage
efficiency and higher speed ef transfer, the data is packed by transferring
two successive 8-bit samples as one 16-bit werd ever the PDP-11/34 UNIBUS.

Because the optical systems of the scanners introduce geemetric
distertions, cerrections must be made te the image data to ebtain goed
geometric linearity., This is accemplished by applying small cerrections te
the output buffer memory address references during readout. The corrections
are stored in a geometric correction RAM and are added to the memory address
of the output buffer RAM, The corrections are only applied when the image
data is read out; all other data transfers to and from the buffer RAM use the
normal sequential addressing. All RAMs in the video precesser can be leaded
and read from the computer throeugh the DMA transfer device. The video
processor memeries can, therefore, be meodified during system operation. The
video processer can also be tested for proper operatien by transferring test
data te and frem the various RAMs in the video processer. Medification ef RAM

contents during system operatien is used in autematic calibratien precedures.

8.7 COMPUTER CONTROL SYSTEM

The control computer and its peripherals comprise a major part of the
system, The various centrel sequences, computatiens, and data transfers
necessary to implement the varieus functioens ef the system are performed by
the contrel computer under the directien ef its stered pregrams. The computer
is a PDP 11/34 with 32K words of memory and a fleating point precesser.
Peripherals include a CRT terminal, floppy disk unit, DMA transfer interface,

RPO6 dual access mass storage disk unit, and a special centrel interface. The

CRT terminal is used primarily foer eperater interaction with the system. It
allows the operator to enter and display data, select medes of operation, and
initiate various functiens of the system. The fleppy disk unit is used te
read pregrams frem a permanent storage medium during system startup. The DMA
transfer interface is used to transfer blecks of data between the cemputer
memory and the varieus RAMs of the videe precesser, The RPO6 dual access disk
unit 1s used to store image data for transfer te the PDP-11/70 AFES computer
system. During image scanning and digitizing, image data is written inte the
RPO6 on a line-by-line basis. When a complete image is digitized and stered
on the disk, the PDP-11/70 cemputer reads eut the data by way ef the ether
disk access port.

The contrel interface unit centains parallel input/eutput (I/0) and serve
controel hardware te allew the computer te contrel the three scanners and the
video precessor. Serve centrel exercised by the cemputer includes the tweo
axes of each phote stage, the X and Y axes of the graphics scanner, the
magnificatien eptics, and the rotatien optics. Limit switches on the varieus
servo systems are sensed threugh the parallel input hardware of the interface.
Parallel 1I/0 hardware is used to contrel and sense status ef the videe
processor, In addition, an operater centroel panel is serviced threugh
parallel I/0 hardware of the interface unit.

The various functienal capabilities ef the stereo image digitizer system
are implemented primarily by the cemputer pregrams. These pregrams respend te
inputs frem either the eperator or the 11/70 cemputer and perform the varieus
programmed functiens ef the system. They generate metion cemmands for the
serveo travel, and take appreprlate remedial actien, During the performance eof
the various system functiens, the pregrams éontrol the sequences ef operations
and the flow ef data through the system.

8-13

delected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering suppont wothm areas of technical competence
48 provided to ESD Pnogn.am f4ces (POS) and other ESD
elements. The principal technical mission areas are
communications, electromagnetic guidance and control, sur-
veillance of ground and aerospace obsects, Lntocugence data
collection and handung, Anformation dystem technology,
Lonospheric propagation, solid state sciences, microwave

M ISSION
of
Rome Air Development Center
RADC plars and executes research, development, test and
phyau.a and deom:m u&mbM maintainability and g

